国产18禁黄网站免费观看,99爱在线精品免费观看,粉嫩metart人体欣赏,99久久99精品久久久久久,6080亚洲人久久精品

高二數(shù)學(xué)必修五知識點(diǎn)總結(jié)

時間:2022-01-10 14:08:00   來源:無憂考網(wǎng)     [字體: ]
【#高二# #高二數(shù)學(xué)必修五知識點(diǎn)總結(jié)#】高二本身的知識體系而言,它主要是對高一知識的深入和新知識模塊的補(bǔ)充。以數(shù)學(xué)為例,除去不同學(xué)校教學(xué)進(jìn)度的不同,我們會在高二接觸到更為深入的函數(shù),也將開始學(xué)習(xí)從未接觸過的復(fù)數(shù)、圓錐曲線等題型。©無憂考網(wǎng)高二頻道為你整理了《高二數(shù)學(xué)必修五知識點(diǎn)總結(jié)》希望對你有所幫助!

1.高二數(shù)學(xué)必修五知識點(diǎn)總結(jié)


  分層抽樣

  兩種方法:

  1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。

  2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。

  2.分層抽樣是把異質(zhì)性較強(qiáng)的總體分成一個個同質(zhì)性較強(qiáng)的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進(jìn)而代表總體。

  分層標(biāo)準(zhǔn):

  (1)以調(diào)查所要分析和研究的主要變量或相關(guān)的變量作為分層的標(biāo)準(zhǔn)。

  (2)以保證各層內(nèi)部同質(zhì)性強(qiáng)、各層之間異質(zhì)性強(qiáng)、突出總體內(nèi)在結(jié)構(gòu)的變量作為分層變量。

  (3)以那些有明顯分層區(qū)分的變量作為分層變量。

  3.分層的比例問題:

  (1)按比例分層抽樣:

  根據(jù)各種類型或?qū)哟沃械膯挝粩?shù)目占總體單位數(shù)目的比重來抽取子樣本的方法。

  (2)不按比例分層抽樣:

  有的層次在總體中的比重太小,其樣本量就會非常少,此時采用該方法,主要是便于對不同層次的子總體進(jìn)行專門研究或進(jìn)行相互比較。如果要用樣本資料推斷總體時,則需要先對各層的數(shù)據(jù)資料進(jìn)行加權(quán)處理,調(diào)整樣本中各層的比例,使數(shù)據(jù)恢復(fù)到總體中各層實(shí)際的比例結(jié)構(gòu)。

2.高二數(shù)學(xué)必修五知識點(diǎn)總結(jié)

  (1)必然事件:在條件S下,一定會發(fā)生的事件,叫相對于條件S的必然事件;

  (2)不可能事件:在條件S下,一定不會發(fā)生的事件,叫相對于條件S的不可能事件;

  (3)確定事件:必然事件和不可能事件統(tǒng)稱為相對于條件S的確定事件;

  (4)隨機(jī)事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件S的隨機(jī)事件;

  (5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)=為事件A出現(xiàn)的概率:對于給定的隨機(jī)事件A,如果隨著試驗(yàn)次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個常數(shù)上,把這個常數(shù)記作P(A),稱為事件A的概率。

  (6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗(yàn)總次數(shù)n的比值,它具有一定的穩(wěn)定性,總在某個常數(shù)附近擺動,且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動幅度越來越小。我們把這個常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個事件的概率

3.高二數(shù)學(xué)必修五知識點(diǎn)總結(jié)


  1.求值中主要有三類求值問題:

  (1)“給角求值”:一般所給出的角都是非特殊角,從表面來看是很難的,但仔細(xì)觀察非特殊角與特殊角總有一定關(guān)系,解題時,要利用觀察得到的關(guān)系,結(jié)合公式轉(zhuǎn)化為特殊角并且消除非特殊角的三角函數(shù)而得解.

  (2)“給值求值”:給出某些角的三角函數(shù)式的值,求另外一些角的三角函數(shù)值,解題關(guān)鍵在于“變角”,使其角相同或具有某種關(guān)系.

  (3)“給值求角”:實(shí)質(zhì)是轉(zhuǎn)化為“給值求值”,關(guān)鍵也是變角,把所求角用含已知角的式子表示,由所得的函數(shù)值結(jié)合該函數(shù)的單調(diào)區(qū)間求得角.

  2.三角恒等變換的常用方法、技巧和原則:

  (1)在化簡求值和證明時常用如下方法:切割化弦法,升冪降冪法,和積互化法,輔助元素法,“1”的代換法等.

  (2)常用的拆角、拼角技巧如:2α=(α+β)+(α-β),α=(α+β)-β,α=(α-β)+β,α+β2=α-β2+β-α2,α2是α4的二倍角等.

  (3)化繁為簡:變復(fù)角為單角,變不同角為同角,化非同名函數(shù)為同名函數(shù),化高次為低次,化多項(xiàng)式為單項(xiàng)式,化無理式為有理式.

  消除差異:消除已知與未知、條件與結(jié)論、左端與右端以及各項(xiàng)的次數(shù)、角、函數(shù)名稱、結(jié)構(gòu)等方面的差異.

4.高二數(shù)學(xué)必修五知識點(diǎn)總結(jié)


  任意角三角函數(shù)

  在任意角三角形中,各邊角有以下的函數(shù)關(guān)系:

  正弦定理在任意角三角形中,各個角的正弦與它所對的邊的比相等,并且等于外接圓的直徑。

  余弦定理在任意角三角形中,任意一邊的平方等于其余兩邊的平方和減去這兩邊的乘積的兩倍與它們的夾角的余弦的積。

  在直角坐標(biāo)系中,⊙O的半徑為1,任意角α的三角函數(shù)定義如下:

  正弦:∠α與單位圓的交點(diǎn)A的縱坐標(biāo)與圓半徑的比值叫做正弦,表示為:sinα=Ay/OA=Ay;其中Ay叫做正弦線。

  余弦:∠α與單位圓的交點(diǎn)A的橫坐標(biāo)與圓半徑的比值叫做余弦,表示為:cosα=Ax/OA=Ax;其中Ax叫做余弦線。

  正切:∠α與單位圓的交點(diǎn)A的縱坐標(biāo)與橫坐標(biāo)的比值叫做正切,表示為:tanα=Ay/Ax;

  余切:∠α與單位圓的交點(diǎn)A的橫坐標(biāo)與縱坐標(biāo)的比值叫做余切,表示為:cotα=Ax/Ay;;

  正割:圓半徑和∠α與單位圓的交點(diǎn)A的橫坐標(biāo)的比值叫做正割,表示為:secα=OA/Ax=1/Ax;

  余割:圓半徑和∠α與單位圓的交點(diǎn)A的縱坐標(biāo)的比值叫做余割,表示為:cscα=OA/Ay=1/Ay;

5.高二數(shù)學(xué)必修五知識點(diǎn)總結(jié)

  公式一:設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:

  sin(2kπ+α)=sinαk∈z

  cos(2kπ+α)=cosαk∈z

  tan(kπ+α)=tanαk∈z

  cot(2kπ+α)=cotαk∈z

  公式二:設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:

  sin(π+α)=—sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  公式三:任意角α與-α的三角函數(shù)值之間的關(guān)系:

  sin(-α)=-sinα

  cos(-α)=cosα

  tan(-α)=-tanα

  cot(-α)=-cotα

  公式四:利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:

  sin(π-α)=sinα

  cos(π-α)=-cosα

  tan(π-α)=-tanα

  cot(π-α)=-cotα

  公式五:利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:

  sin(2π-α)=-sinα

  cos(2π-α)=cosα

  tan(2π-α)=-tanα

  cot(2π-α)=-cotα

  公式六:π/2±α與α的三角函數(shù)值之間的關(guān)系:

  sin(π/2+α)=cosα

  cos(π/2+α)=-sinα

  tan(π/2+α)=-cotα

  cot(π/2+α)=-tanα

  sin(π/2-α)=cosα

  cos(π/2-α)=sinα

  tan(π/2-α)=cotα

  cot(π/2-α)=tanα

  推算公式:3π/2±α與α的三角函數(shù)值之間的關(guān)系:

  sin(3π/2+α)=-cosα

  cos(3π/2+α)=sinα

  tan(3π/2+α)=-cotα

  cot(3π/2+α)=-tanα

  sin(3π/2-α)=-cosα

  cos(3π/2-α)=-sinα

  tan(3π/2-α)=cotα

  cot(3π/2-α)=tanα