高三下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)
時(shí)間:2022-04-19 11:52:00 來(lái)源:無(wú)憂考網(wǎng) [字體:小 中 大]1.高三下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)
復(fù)數(shù)的概念:
形如a+bi(a,b∈R)的'數(shù)叫復(fù)數(shù),其中i叫做虛數(shù)單位。全體復(fù)數(shù)所成的集合叫做復(fù)數(shù)集,用字母C表示。
復(fù)數(shù)的表示:
復(fù)數(shù)通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復(fù)數(shù)的代數(shù)形式,其中a叫復(fù)數(shù)的實(shí)部,b叫復(fù)數(shù)的虛部。
復(fù)數(shù)的幾何意義:
(1)復(fù)平面、實(shí)軸、虛軸:
點(diǎn)Z的橫坐標(biāo)是a,縱坐標(biāo)是b,復(fù)數(shù)z=a+bi(a、b∈R)可用點(diǎn)Z(a,b)表示,這個(gè)建立了直角坐標(biāo)系來(lái)表示復(fù)數(shù)的平面叫做復(fù)平面,x軸叫做實(shí)軸,y軸叫做虛軸。顯然,實(shí)軸上的點(diǎn)都表示實(shí)數(shù),除原點(diǎn)外,虛軸上的點(diǎn)都表示純虛數(shù)
(2)復(fù)數(shù)的幾何意義:復(fù)數(shù)集C和復(fù)平面內(nèi)所有的點(diǎn)所成的集合是一一對(duì)應(yīng)關(guān)系
這是因?yàn),每一個(gè)復(fù)數(shù)有復(fù)平面內(nèi)惟一的一個(gè)點(diǎn)和它對(duì)應(yīng);反過(guò)來(lái),復(fù)平面內(nèi)的每一個(gè)點(diǎn),有惟一的一個(gè)復(fù)數(shù)和它對(duì)應(yīng)。
這就是復(fù)數(shù)的一種幾何意義,也就是復(fù)數(shù)的另一種表示方法,即幾何表示方法。
復(fù)數(shù)的模:
復(fù)數(shù)z=a+bi(a、b∈R)在復(fù)平面上對(duì)應(yīng)的點(diǎn)Z(a,b)到原點(diǎn)的距離叫復(fù)數(shù)的模,記為|Z|,即|Z|=
虛數(shù)單位i:
(1)它的平方等于-1,即i2=-1;
(2)實(shí)數(shù)可以與它進(jìn)行四則運(yùn)算,進(jìn)行四則運(yùn)算時(shí),原有加、乘運(yùn)算律仍然成立
(3)i與-1的關(guān)系:i就是-1的一個(gè)平方根,即方程x2=-1的一個(gè)根,方程x2=-1的另一個(gè)根是-i。
(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
復(fù)數(shù)模的性質(zhì):
復(fù)數(shù)與實(shí)數(shù)、虛數(shù)、純虛數(shù)及0的關(guān)系:
對(duì)于復(fù)數(shù)a+bi(a、b∈R),當(dāng)且僅當(dāng)b=0時(shí),復(fù)數(shù)a+bi(a、b∈R)是實(shí)數(shù)a;當(dāng)b≠0時(shí),復(fù)數(shù)z=a+bi叫做虛數(shù);當(dāng)a=0且b≠0時(shí),z=bi叫做純虛數(shù);當(dāng)且僅當(dāng)a=b=0時(shí),z就是實(shí)數(shù)0。
2.高三下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)
1、三類角的求法:
①找出或作出有關(guān)的角。
、谧C明其符合定義,并指出所求作的角。
、塾(jì)算大小(解直角三角形,或用余弦定理)。
2、正棱柱——底面為正多邊形的直棱柱
正棱錐——底面是正多邊形,頂點(diǎn)在底面的射影是底面的中心。
正棱錐的計(jì)算集中在四個(gè)直角三角形中:
3、怎樣判斷直線l與圓C的位置關(guān)系?
圓心到直線的距離與圓的半徑比較。
直線與圓相交時(shí),注意利用圓的“垂徑定理”。
4、對(duì)線性規(guī)劃問(wèn)題:
作出可行域,作出以目標(biāo)函數(shù)為截距的直線,在可行域內(nèi)平移直線,求出目標(biāo)函數(shù)的最值。
培養(yǎng)興趣是關(guān)鍵。學(xué)生對(duì)數(shù)學(xué)產(chǎn)生了興趣,自然有動(dòng)力去鉆研。如何培養(yǎng)興趣呢?
。1)欣賞數(shù)學(xué)的美感
比如幾何圖形中的對(duì)稱、變換前后的不變量、概念的嚴(yán)謹(jǐn)、邏輯的嚴(yán)密……
通過(guò)對(duì)旋轉(zhuǎn)變換及其不變量的討論,我們可以證明反比例函數(shù)、“對(duì)勾函數(shù)”的圖象都是雙曲線——平面上到兩個(gè)定點(diǎn)的距離之差的絕對(duì)值為定值(小于兩個(gè)定點(diǎn)之間的距離)的點(diǎn)的集合。
。2)注意到數(shù)學(xué)在實(shí)際生活中的應(yīng)用。
例如和日常生活息息相關(guān)的等額本金、等額本息兩種不同的還款方式,用數(shù)列的知識(shí)就可以理解、學(xué)好數(shù)學(xué),是現(xiàn)代公民的基本素養(yǎng)之一啊
。3)采用靈活的教學(xué)手段,與時(shí)俱進(jìn)。
利用多種技術(shù)手段,聲、光、電多管齊下,老師可以借此把一些知識(shí)講得更具體形象,學(xué)生也更容易接受,理解更深。
。4)適當(dāng)看一些科普類的書(shū)籍和文章。
比如:學(xué)圓錐曲線的時(shí)候,可以看看一些建筑物的外形,它們被平面所截出的曲線往往就是各種圓錐曲線,很多文章對(duì)此都有介紹;還有圓錐曲線光學(xué)性質(zhì)的應(yīng)用,這方面的文章也不少。
3.高三下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)
a(1)=a,a(n)為公差為r的等差數(shù)列
通項(xiàng)公式:
a(n)=a(n-1)+r=a(n-2)+2r=...=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r.
可用歸納法證明。
n=1時(shí),a(1)=a+(1-1)r=a。成立。
假設(shè)n=k時(shí),等差數(shù)列的通項(xiàng)公式成立。a(k)=a+(k-1)r
則,n=k+1時(shí),a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r.
通項(xiàng)公式也成立。
因此,由歸納法知,等差數(shù)列的通項(xiàng)公式是正確的。
求和公式:
S(n)=a(1)+a(2)+...+a(n)
=a+(a+r)+...+[a+(n-1)r]
=na+r[1+2+...+(n-1)]
=na+n(n-1)r/2
同樣,可用歸納法證明求和公式。
a(1)=a,a(n)為公比為r(r不等于0)的等比數(shù)列
通項(xiàng)公式:
a(n)=a(n-1)r=a(n-2)r^2=...=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1).
可用歸納法證明等比數(shù)列的通項(xiàng)公式。
求和公式:
S(n)=a(1)+a(2)+...+a(n)
=a+ar+...+ar^(n-1)
=a[1+r+...+r^(n-1)]
r不等于1時(shí),
S(n)=a[1-r^n]/[1-r]
r=1時(shí),
S(n)=na.
同樣,可用歸納法證明求和公式。
4.高三下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)
一、函數(shù)的定義域的常用求法:
1、分式的分母不等于零;
2、偶次方根的被開(kāi)方數(shù)大于等于零;
3、對(duì)數(shù)的真數(shù)大于零;
4、指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的底數(shù)大于零且不等于1;
5、三角函數(shù)正切函數(shù)y=tanx中x≠kπ+π/2;
6、如果函數(shù)是由實(shí)際意義確定的解析式,應(yīng)依據(jù)自變量的實(shí)際意義確定其取值范圍。
二、函數(shù)的解析式的常用求法:
1、定義法;
2、換元法;
3、待定系數(shù)法;
4、函數(shù)方程法;
5、參數(shù)法;
6、配方法
三、函數(shù)的值域的常用求法:
1、換元法;
2、配方法;
3、判別式法;
4、幾何法;
5、不等式法;
6、單調(diào)性法;
7、直接法
四、函數(shù)的最值的常用求法:
1、配方法;
2、換元法;
3、不等式法;
4、幾何法;
5、單調(diào)性法
五、函數(shù)單調(diào)性的常用結(jié)論:
1、若f(x),g(x)均為某區(qū)間上的增(減)函數(shù),則f(x)+g(x)在這個(gè)區(qū)間上也為增(減)函數(shù)。
2、若f(x)為增(減)函數(shù),則-f(x)為減(增)函數(shù)。
3、若f(x)與g(x)的單調(diào)性相同,則f[g(x)]是增函數(shù);若f(x)與g(x)的單調(diào)性不同,則f[g(x)]是減函數(shù)。
4、奇函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相同,偶函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相反。
5、常用函數(shù)的單調(diào)性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數(shù)圖象。
六、函數(shù)奇偶性的常用結(jié)論:
1、如果一個(gè)奇函數(shù)在x=0處有定義,則f(0)=0,如果一個(gè)函數(shù)y=f(x)既是奇函數(shù)又是偶函數(shù),則f(x)=0(反之不成立)。
2、兩個(gè)奇(偶)函數(shù)之和(差)為奇(偶)函數(shù);之積(商)為偶函數(shù)。
3、一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的積(商)為奇函數(shù)。
4、兩個(gè)函數(shù)y=f(u)和u=g(x)復(fù)合而成的函數(shù),只要其中有一個(gè)是偶函數(shù),那么該復(fù)合函數(shù)就是偶函數(shù);當(dāng)兩個(gè)函數(shù)都是奇函數(shù)時(shí),該復(fù)合函數(shù)是奇函數(shù)。
5、若函數(shù)f(x)的定義域關(guān)于原點(diǎn)對(duì)稱,則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],該式的特點(diǎn)是:右端為一個(gè)奇函數(shù)和一個(gè)偶函數(shù)的和。
5.高三下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)
1、直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
2、直線的斜率
、俣x:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。
②過(guò)兩點(diǎn)的直線的斜率公式:
注意下面四點(diǎn):
(1)當(dāng)時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無(wú)關(guān);
(3)以后求斜率可不通過(guò)傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;
(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。
3、直線方程
點(diǎn)斜式:
直線斜率k,且過(guò)點(diǎn)
注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1。當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。