所以乘積的首數(shù)為2×(2+1)=6,尾數(shù)為3×7=21,即23×27=621
【例1】假設某國外匯匯率以30.5%的平均速度增長,預計8年之后的外匯匯率大約為現(xiàn)在的多少倍?( )
A.3.4 B.4.5 C.6.8 D.8.4
【解析】(1+30.5%)8=1.3058≈1.38=(1.32)4=1.694≈1.74=2.892≈2.92=8.41,選擇D
[注釋] 本題速算反復運用了常用平方數(shù),并且中間進行了多次近似,這些近似各自只忽略了非常小的量,并且三次近似方向也不相同,因此可以有效的抵消誤差,達到選項所要求的精度。
【例2】根據(jù)材料,9~10月的銷售額為( )萬元。
A.42.01 B.42.54 C.43.54 D.41.89
【解析】257.28-43.52-40.27-41.38-43.26-46.31的尾數(shù)為“4”,排除A、D,又從圖像上明顯得到,9-10月份的銷售額低于7-8月份,選擇B。
[注釋] 這是地方考題經(jīng)常出現(xiàn)的考查類型,即使存在近似的誤差,本題當中的簡單減法得出的尾數(shù)仍然是非常接近真實值的尾數(shù)的,至少不會離“4”很遠
“差分法”是在比較兩個分數(shù)大小時,用“直除法”或者“化同法”等其他速算方式難以解決時可以采取的一種速算方式。
適用形式:
兩個分數(shù)作比較時,若其中一個分數(shù)的分子與分母都比另外一個分數(shù)的分子與分母分別僅僅大一點,這時候使用“直除法”、“化同法”經(jīng)常很難比較出大小關系,而使用“差分法”卻可以很好地解決這樣的問題。
基礎定義:
在滿足“適用形式”的兩個分數(shù)中,我們定義分子與分母都比較大的分數(shù)叫“大分數(shù)”,分子與分母都比較小的分數(shù)叫“小分數(shù)”,而這兩個分數(shù)的分子、分母分別做差得到的新的分數(shù)我們定義為“差分數(shù)”。例如:324/53.1與313/51.7比較大小,其中324/53.1就是“大分數(shù)”,313/51.7就是“小分數(shù)”,而324-313/53.1-51.7=11/1.4就是“差分數(shù)”。
【例1】假設某國外匯匯率以30.5%的平均速度增長,預計8年之后的外匯匯率大約為現(xiàn)在的多少倍?( )
A.3.4 B.4.5 C.6.8 D.8.4
【解析】(1+30.5%)8=1.3058≈1.38=(1.32)4=1.694≈1.74=2.892≈2.92=8.41,選擇D
[注釋] 本題速算反復運用了常用平方數(shù),并且中間進行了多次近似,這些近似各自只忽略了非常小的量,并且三次近似方向也不相同,因此可以有效的抵消誤差,達到選項所要求的精度。
【例2】根據(jù)材料,9~10月的銷售額為( )萬元。
A.42.01 B.42.54 C.43.54 D.41.89
【解析】257.28-43.52-40.27-41.38-43.26-46.31的尾數(shù)為“4”,排除A、D,又從圖像上明顯得到,9-10月份的銷售額低于7-8月份,選擇B。
[注釋] 這是地方考題經(jīng)常出現(xiàn)的考查類型,即使存在近似的誤差,本題當中的簡單減法得出的尾數(shù)仍然是非常接近真實值的尾數(shù)的,至少不會離“4”很遠
“差分法”是在比較兩個分數(shù)大小時,用“直除法”或者“化同法”等其他速算方式難以解決時可以采取的一種速算方式。
適用形式:
兩個分數(shù)作比較時,若其中一個分數(shù)的分子與分母都比另外一個分數(shù)的分子與分母分別僅僅大一點,這時候使用“直除法”、“化同法”經(jīng)常很難比較出大小關系,而使用“差分法”卻可以很好地解決這樣的問題。
基礎定義:
在滿足“適用形式”的兩個分數(shù)中,我們定義分子與分母都比較大的分數(shù)叫“大分數(shù)”,分子與分母都比較小的分數(shù)叫“小分數(shù)”,而這兩個分數(shù)的分子、分母分別做差得到的新的分數(shù)我們定義為“差分數(shù)”。例如:324/53.1與313/51.7比較大小,其中324/53.1就是“大分數(shù)”,313/51.7就是“小分數(shù)”,而324-313/53.1-51.7=11/1.4就是“差分數(shù)”。