(2)第一類:甲在排尾,乙在排頭,有A(4,4)種方法;
第二類:甲在排尾,乙不在排頭,有3P(4,4)種方法;
第三類:乙在排頭,甲不在排頭,有4P(4,4)種方法;
第四類:甲不在排尾,乙不在排頭,有P(3,3) A(4,4)種方法;
共P(4,4)+3A(4,4)+4A(4,4)+A(3,3) A(4,4)=312種。
三、間接計數(shù)法
例:三行三列共九個點,以這些點為頂點可組成多少個三角形?
華圖分析:有些問題正面求解有一定困難,可以采用間接法。
比如說該題直接去求三角形的個數(shù)分類太多,比較復(fù)雜;換個方式思考,所求問題的方法數(shù)=任意三個點的組合數(shù)-三點共線的情況數(shù)。
四、捆綁法與插空法
例1:某人射擊8槍,命中4槍,恰好有三槍連續(xù)命中,有多少種不同的情況?
華圖分析:連續(xù)命中的三槍與單獨命中的一槍不能相鄰,因而這是一個插空問題。另外沒有命中的之間沒有區(qū)別,不必計數(shù)。即在四發(fā)空槍之間形成的5個空中選出2個的排列,即A(5,2)。
例2:馬路上有編號為l,2,3,……10 十個路燈,為節(jié)約用電又看清路面,可以把其中的三只燈關(guān)掉,但不能同時關(guān)掉相鄰的兩只或三只,在兩端的燈也不能關(guān)掉的情況下,求滿足條件的關(guān)燈方法共有多少種?
華圖分析:即關(guān)掉的燈不能相鄰,也不能在兩端。又因為燈與燈之間沒有區(qū)別,因而問題為在7盞亮著的燈形成的不包含兩端的6個空中選出3個空放置熄滅的燈。
共C(3,6)=20種方法。
總的來說,排列組合問題雖然很難,但只要分清楚什么時候是分類什么時候是分步,并算清楚每一類或每一步的方法數(shù)(此時往往是用排列或者組合,注意是否與順序有關(guān)),如果是分類再把每一類的方法數(shù)加起來,如果是分步就把每一步的方法數(shù)撐起來。遵循這樣的解題思路,才能更準(zhǔn)確的解決排列組合這一較難的專題。
第二類:甲在排尾,乙不在排頭,有3P(4,4)種方法;
第三類:乙在排頭,甲不在排頭,有4P(4,4)種方法;
第四類:甲不在排尾,乙不在排頭,有P(3,3) A(4,4)種方法;
共P(4,4)+3A(4,4)+4A(4,4)+A(3,3) A(4,4)=312種。
三、間接計數(shù)法
例:三行三列共九個點,以這些點為頂點可組成多少個三角形?
華圖分析:有些問題正面求解有一定困難,可以采用間接法。
比如說該題直接去求三角形的個數(shù)分類太多,比較復(fù)雜;換個方式思考,所求問題的方法數(shù)=任意三個點的組合數(shù)-三點共線的情況數(shù)。
四、捆綁法與插空法
例1:某人射擊8槍,命中4槍,恰好有三槍連續(xù)命中,有多少種不同的情況?
華圖分析:連續(xù)命中的三槍與單獨命中的一槍不能相鄰,因而這是一個插空問題。另外沒有命中的之間沒有區(qū)別,不必計數(shù)。即在四發(fā)空槍之間形成的5個空中選出2個的排列,即A(5,2)。
例2:馬路上有編號為l,2,3,……10 十個路燈,為節(jié)約用電又看清路面,可以把其中的三只燈關(guān)掉,但不能同時關(guān)掉相鄰的兩只或三只,在兩端的燈也不能關(guān)掉的情況下,求滿足條件的關(guān)燈方法共有多少種?
華圖分析:即關(guān)掉的燈不能相鄰,也不能在兩端。又因為燈與燈之間沒有區(qū)別,因而問題為在7盞亮著的燈形成的不包含兩端的6個空中選出3個空放置熄滅的燈。
共C(3,6)=20種方法。
總的來說,排列組合問題雖然很難,但只要分清楚什么時候是分類什么時候是分步,并算清楚每一類或每一步的方法數(shù)(此時往往是用排列或者組合,注意是否與順序有關(guān)),如果是分類再把每一類的方法數(shù)加起來,如果是分步就把每一步的方法數(shù)撐起來。遵循這樣的解題思路,才能更準(zhǔn)確的解決排列組合這一較難的專題。