在逐字逐句的比對后,發(fā)現(xiàn)2016年考研數(shù)學(xué)二大綱與2015年相比,沒有發(fā)生任何變化,經(jīng)歷了多年統(tǒng)考實(shí)踐,考研數(shù)學(xué)的考試內(nèi)容已趨于完善,因此,相應(yīng)的考試大綱今年也沒有發(fā)生變化。考生可以通過研究真題來揣摩命題者的出題規(guī)律,從而把握今年命題的思路和趨勢,按部就班的進(jìn)行分析復(fù)習(xí),增加復(fù)習(xí)備考的針對性和有效性。盡管2016年考研數(shù)學(xué)大綱沒有變動(dòng),但是仍然需要考生提高橫向、縱向梳理考點(diǎn)的能力,只有這樣才能拿到高分,所以考生仍然需要扎實(shí)備考。
下面我們就看看今年數(shù)學(xué)二高等數(shù)學(xué)部分的大綱要求:
一、函數(shù)、極限、連續(xù)
1.理解函數(shù)的概念,掌握函數(shù)的表示法,并會建立應(yīng)用問題的函數(shù)關(guān)系.
2.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性.
3.理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念.
4.掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念.
5.理解極限的概念,理解函數(shù)左極限與右極限的概念以及函數(shù)極限存在與左極限、右極限之間的關(guān)系.
6.掌握極限的性質(zhì)及四則運(yùn)算法則.
7.掌握極限存在的兩個(gè)準(zhǔn)則,并會利用它們求極限,掌握利用兩個(gè)重要極限求極限的方法.
8.理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價(jià)無窮小量求極限.
9.理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數(shù)間斷點(diǎn)的類型.
10.了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、值和最小值定理、介值定理),并會應(yīng)用這些性質(zhì).
二、一元函數(shù)微分學(xué)
1.理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會用導(dǎo)數(shù)描述一些物理量,理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系.
2.掌握導(dǎo)數(shù)的四則運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的導(dǎo)數(shù)公式.了解微分的四則運(yùn)算法則和一階微分形式的不變性,會求函數(shù)的微分.
3.了解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的高階導(dǎo)數(shù).
4.會求分段函數(shù)的導(dǎo)數(shù),會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù).
5.理解并會用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并會用柯西(Cauchy)中值定理.
6.掌握用洛必達(dá)法則求未定式極限的方法.
7.理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)的值和最小值的求法及其應(yīng)用.
8.會用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間 內(nèi),設(shè)函數(shù) 具有二階導(dǎo)數(shù).當(dāng) 時(shí), 的圖形是凹的;當(dāng) 時(shí), 的圖形是凸的),會求函數(shù)圖形的拐點(diǎn)以及水平、鉛直和斜漸近線,會描繪函數(shù)的圖形.
9.了解曲率、曲率圓和曲率半徑的概念,會計(jì)算曲率和曲率半徑.
三、一元函數(shù)積分學(xué)
1.理解原函數(shù)的概念,理解不定積分和定積分的概念.
2.掌握不定積分的基本公式,掌握不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法與分部積分法.
3.會求有理函數(shù)、三角函數(shù)有理式和簡單無理函數(shù)的積分.
4.理解積分上限的函數(shù),會求它的導(dǎo)數(shù),掌握牛頓-萊布尼茨公式.
5.了解反常積分的概念,會計(jì)算反常積分.
6.掌握用定積分表達(dá)和計(jì)算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、旋轉(zhuǎn)體的體積及側(cè)面積、平行截面面積為已知的立體體積、功、引力、壓力、質(zhì)心、形心等)及函數(shù)平均值.
四、多元函數(shù)微積分學(xué)
1.了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義.
2.了解二元函數(shù)的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì).
3.了解多元函數(shù)偏導(dǎo)數(shù)與全微分的概念,會求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù),會求全微分,了解隱函數(shù)存在定理,會求多元隱函數(shù)的偏導(dǎo)數(shù).
4.了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求簡單多元函數(shù)的值和最小值,并會解決一些簡單的應(yīng)用問題.
5.了解二重積分的概念與基本性質(zhì),掌握二重積分的計(jì)算方法(直角坐標(biāo)、極坐標(biāo)).
五、常微分方程
1.了解微分方程及其階、解、通解、初始條件和特解等概念.
2.掌握變量可分離的微分方程及一階線性微分方程的解法,會解齊次微分方程.
3.會用降階法解下列形式的微分方程: 和 .
4.理解二階線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理.
5.掌握二階常系數(shù)齊次線性微分方程的解法,并會解某些高于二階的常系數(shù)齊次線性微分方程.
6.會解自由項(xiàng)為多項(xiàng)式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)以及它們的和與積的二階常系數(shù)非齊次線性微分方程.
7.會用微分方程解決一些簡單的應(yīng)用問題.
所以同學(xué)們繼續(xù)按照原計(jì)劃復(fù)習(xí),夯實(shí)基礎(chǔ),把握重點(diǎn),重視總結(jié)、歸納解題思路、方法和技巧,提高解題計(jì)算能力必能在2016的考試中創(chuàng)造輝煌。最后祝同學(xué)們,金榜題名。
- 2024年內(nèi)蒙古農(nóng)業(yè)大學(xué)社會工作原理考研真題
- 2024年內(nèi)蒙古農(nóng)業(yè)大學(xué)社會工作實(shí)務(wù)考研真題
- 2024年內(nèi)蒙古農(nóng)業(yè)大學(xué)森林作業(yè)環(huán)境學(xué)考研真題
- 2024年內(nèi)蒙古農(nóng)業(yè)大學(xué)農(nóng)業(yè)知識綜合四考研真題
- 2024年內(nèi)蒙古農(nóng)業(yè)大學(xué)馬克思主義中國化考研真題
- 2024年內(nèi)蒙古農(nóng)業(yè)大學(xué)馬克思主義基本原理考研真題
- 查看考研全部真題>>
- 研招網(wǎng)2025年考研網(wǎng)上調(diào)劑服務(wù)系統(tǒng)4月8日開通
- 研招網(wǎng)2025年考研調(diào)劑意向采集服務(wù)系統(tǒng)3月28日開通
- 北京2025年考研網(wǎng)上調(diào)劑服務(wù)系統(tǒng)(4月8日開通)
- 北京2025年考研調(diào)劑意向采集服務(wù)系統(tǒng)(3月28日開通)
- 天津2025年考研網(wǎng)上調(diào)劑服務(wù)系統(tǒng)(4月8日開通)
- 天津2025年考研調(diào)劑意向采集服務(wù)系統(tǒng)(3月28日開通)
- 查看考研全部文檔 >>