我們先來看下面的問題:
從甲地到乙地,可以乘火車,也可以乘汽車。在一天中,火車有2班,汽車有3班。那么一天中,乘坐這些交流工具從甲地到乙地共有多少種不同的走法?
因?yàn)橐惶熘谐嘶疖囉?種走法,乘汽車有3種走法,每一種走法都可以從甲地到乙地,所以共有:3+2=5種不同的走法,如下圖所示:
一般的,有如下原理:
分類計(jì)數(shù)原理(也稱加法原理)完成一件事,有n類辦法,在第1類辦法中有m1種不同的方法,在第2類辦法中有m2種不同的方法……在第n類辦法中有mn種不同的方法。那么完成這件事共有
N=m1+m2+…+mn
種不同的方法。
再看下面的問題:
從甲地到乙地,要先從甲地乘火車到丙地,再于次日從丙地乘汽車到乙地。一天中,火車有2班,汽車有3班。那么兩天中,從甲地到乙地共有多少種不同的走法?(如下圖。)
這個(gè)問題與前面的問題不同。在前一問題中,采用乘火車或乘汽車中的任何一種方式,都可以從甲地到乙地,而在這個(gè)問題中,必須經(jīng)過先乘火車、后乘汽車兩個(gè)步驟,才能從甲地到乙地。
這里,因?yàn)槌嘶疖囉?種走法,乘汽車有3種走法,所以乘一次火車再接著乘一次汽車從甲地到乙地,共有2×3=6種不同的走法。
所有走法
火車1──汽車1
火車1──汽車2
火車1──汽車3
火車2──汽車1
火車2──汽車2
火車2──汽車3
一般的,有如下原理:
分步計(jì)數(shù)原理(也稱乘法原理)完成一件事,需要分成n個(gè)步驟,做第1步有m1種不同的方法,做第2步有m2種不同的方法……做第n步有mn種不同的方法。那么完成這件事共有
N=m1×m2×…×mn
種不同的方法。
例書架的第1層放有4本不同的科技書,第2層放有3本不同的漫畫書,第3層放有2本不同的文學(xué)書。
(1)從書架上任取1本書,有多少種不同的取法?
(2)從書架的第1、2、3層各取1本書,有多少種不同的取法?
解:(1)從書架上任取1本書,有3類辦法:第1類辦法是從第1層取1本科技書,有4種方法;第2類辦法是從第2層取1本漫畫書,有3種方法;第3類辦法是從第3層取1本文學(xué)書,有2種方法。根據(jù)分類計(jì)數(shù)原理,不同取法的種數(shù)是
N=m1+m2+m3=4+3+2=9
答:從書架上任取1本書,有9種不同的取法。
(2)從書架的第1、2、3層各取1本書,可以分成3個(gè)步驟完成:第1步從第1層取1本科技書,有4種方法;第2步從第2層取1本漫畫書,有3種方法;第3步從第3層取1本文學(xué)書,有2種方法。根據(jù)分步計(jì)數(shù)原理,從書架的第1、2、3層各取1本書,不同取法的種數(shù)是
N=m1×m2×m3=4×3×2=24
答:從書架的第1、2、3層各取1本書,有24種不同的取法。
分類計(jì)數(shù)原理與分步計(jì)數(shù)原理,回答的都是有關(guān)做一件事的不同方法種數(shù)的問題。區(qū)別在于:分類計(jì)數(shù)原理針對的是“分類”問題,其中各種方法相互獨(dú)立,用其中任何一種方法都可以做完這件事;分步計(jì)數(shù)原理針對的是“分步”問題,各步驟中的方法相互依存,只有各個(gè)步驟都完成才算做完這件事。