線段垂直平分線:
①概念:垂直且平分線段的直線叫做這條線段的垂直平分線。
②性質(zhì):線段垂直平分線上的點到線段兩個端點的距離相等。
∵ OA=OB CD⊥AB
∴ PA=PB
等腰三角形性質(zhì): (有兩條邊相等的三角形叫做等腰三角形)
①等腰三角形是軸對稱圖形; (一條對稱軸)
、诘妊切蔚走吷现芯,底邊上的高,頂角的平分線重合; (三線合一)
③等腰三角形的兩個底角相等。 (簡稱:等邊對等角)
在一個三角形中,如果有兩個角相等,那么它所對的兩條邊也相等。(簡稱:等角對等邊)
等邊三角形的性質(zhì):等邊三角形是特殊的等腰三角形,它具有等腰三角形的所有性質(zhì)。
、 等邊三角形的三條邊相等,三個角都等于60; ②等邊三角形有三條對稱軸。
軸對稱的性質(zhì):
、 關(guān)于某條直線對稱的兩個圖形是全等形; ②對應(yīng)線段、對應(yīng)角相等;
② 對應(yīng)點的連線被對稱軸垂直且平分; ④對應(yīng)線段如果相交,那么交點在對稱軸上。
①概念:垂直且平分線段的直線叫做這條線段的垂直平分線。
②性質(zhì):線段垂直平分線上的點到線段兩個端點的距離相等。
∵ OA=OB CD⊥AB
∴ PA=PB
等腰三角形性質(zhì): (有兩條邊相等的三角形叫做等腰三角形)
①等腰三角形是軸對稱圖形; (一條對稱軸)
、诘妊切蔚走吷现芯,底邊上的高,頂角的平分線重合; (三線合一)
③等腰三角形的兩個底角相等。 (簡稱:等邊對等角)
在一個三角形中,如果有兩個角相等,那么它所對的兩條邊也相等。(簡稱:等角對等邊)
等邊三角形的性質(zhì):等邊三角形是特殊的等腰三角形,它具有等腰三角形的所有性質(zhì)。
、 等邊三角形的三條邊相等,三個角都等于60; ②等邊三角形有三條對稱軸。
軸對稱的性質(zhì):
、 關(guān)于某條直線對稱的兩個圖形是全等形; ②對應(yīng)線段、對應(yīng)角相等;
② 對應(yīng)點的連線被對稱軸垂直且平分; ④對應(yīng)線段如果相交,那么交點在對稱軸上。