高一數(shù)學寒假作業(yè):奇偶性訓練題一
1.下列命題中,真命題是( )
A.函數(shù)y=1x是奇函數(shù),且在定義域內(nèi)為減函數(shù)
B.函數(shù)y=x3(x-1)0是奇函數(shù),且在定義域內(nèi)為增函數(shù)
C.函數(shù)y=x2是偶函數(shù),且在(-3,0)上為減函數(shù)
D.函數(shù)y=ax2+c(ac≠0)是偶函數(shù),且在(0,2)上為增函數(shù)
解析:選C.選項A中,y=1x在定義域內(nèi)不具有單調(diào)性;B中,函數(shù)的定義域不關(guān)于原點對稱;D中,當a<0時,y=ax2+c(ac≠0)在(0,2)上為減函數(shù),故選C.
2.奇函數(shù)f(x)在區(qū)間[3,7]上是增函數(shù),在區(qū)間[3,6]上的值為8,最小值為-1,則2f(-6)+f(-3)的值為( )
A.10 B.-10
C.-15 D.15
解析:選C.f(x)在[3,6]上為增函數(shù),f(x)max=f(6)=8,f(x)min=f(3)=-1.∴2f(-6)+f(-3)=-2f(6)-f(3)=-2×8+1=-15.
高一數(shù)學寒假作業(yè):奇偶性訓練題二
2.奇函數(shù)f(x)在區(qū)間[3,7]上是增函數(shù),在區(qū)間[3,6]上的值為8,最小值為-1,則2f(-6)+f(-3)的值為( )
A.10 B.-10
C.-15 D.15
解析:選C.f(x)在[3,6]上為增函數(shù),f(x)max=f(6)=8,f(x)min=f(3)=-1.∴2f(-6)+f(-3)=-2f(6)-f(3)=-2×8+1=-15.
3.f(x)=x3+1x的圖象關(guān)于( )
A.原點對稱 B.y軸對稱
C.y=x對稱 D.y=-x對稱
解析:選A.x≠0,f(-x)=(-x)3+1-x=-f(x),f(x)為奇函數(shù),關(guān)于原點對稱.
4.如果定義在區(qū)間[3-a,5]上的函數(shù)f(x)為奇函數(shù),那么a=________.
解析:∵f(x)是[3-a,5]上的奇函數(shù),
∴區(qū)間[3-a,5]關(guān)于原點對稱,
∴3-a=-5,a=8.
答案:8
高一數(shù)學寒假作業(yè):奇偶性訓練題三
1.函數(shù)f(x)=x的奇偶性為( )
A.奇函數(shù) B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù) D.非奇非偶函數(shù)
解析:選D.定義域為{x|x≥0},不關(guān)于原點對稱.
2.下列函數(shù)為偶函數(shù)的是( )
A.f(x)=|x|+x B.f(x)=x2+1x
C.f(x)=x2+x D.f(x)=|x|x2
解析:選D.只有D符合偶函數(shù)定義.
3.設(shè)f(x)是R上的任意函數(shù),則下列敘述正確的是( )
高一數(shù)學寒假作業(yè):奇偶性訓練題四
4.已知函數(shù)f(x)=ax2+bx+c(a≠0)是偶函數(shù),那么g(x)=ax3+bx2+cx( )
A.是奇函數(shù)
B.是偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)
D.是非奇非偶函數(shù)
解析:選A.g(x)=x(ax2+bx+c)=xf(x),g(-x)=-x•f(-x)=-x•f(x)=-g(x),所以g(x)=ax3+bx2+cx是奇函數(shù);因為g(x)-g(-x)=2ax3+2cx不恒等于0,所以g(-x)=g(x)不恒成立.故g(x)不是偶函數(shù).
5.奇函數(shù)y=f(x)(x∈R)的圖象點( )
A.(a,f(-a)) B.(-a,f(a))
C.(-a,-f(a)) D.(a,f(1a))
解析:選C.∵f(x)是奇函數(shù),
∴f(-a)=-f(a),
即自變量取-a時,函數(shù)值為-f(a),
故圖象點(-a,-f(a)).
6.f(x)為偶函數(shù),且當x≥0時,f(x)≥2,則當x≤0時( )
A.f(x)≤2 B.f(x)≥2
C.f(x)≤-2 D.f(x)∈R
解析:選B.可畫f(x)的大致圖象易知當x≤0時,有f(x)≥2.故選B.
A.f(x)f(-x)是奇函數(shù)
B.f(x)|f(-x)|是奇函數(shù)
C.f(x)-f(-x)是偶函數(shù)
D.f(x)+f(-x)是偶函數(shù)
解析:選D.設(shè)F(x)=f(x)f(-x)
則F(-x)=F(x)為偶函數(shù).
設(shè)G(x)=f(x)|f(-x)|,
則G(-x)=f(-x)|f(x)|.
∴G(x)與G(-x)關(guān)系不定.
設(shè)M(x)=f(x)-f(-x),
∴M(-x)=f(-x)-f(x)=-M(x)為奇函數(shù).
設(shè)N(x)=f(x)+f(-x),則N(-x)=f(-x)+f(x).
N(x)為偶函數(shù).