国产18禁黄网站免费观看,99爱在线精品免费观看,粉嫩metart人体欣赏,99久久99精品久久久久久,6080亚洲人久久精品

初三上學期數(shù)學知識點歸納

時間:2018-11-16 17:11:00   來源:無憂考網     [字體: ]

#初中三年級# #初三上學期數(shù)學知識點歸納#】學習是每個一個學生的職責,而學習的動力是靠自己的夢想,也可以這樣說沒有自己的夢想就是對自己的一種不責任的表現(xiàn),也就和人失走肉沒啥兩樣,只是改變命運,同時知識也不是也不是隨意的摘取。要通過自己的努力,要把我自己生命的鑰匙。以下是®無憂考網為您整理的《初三上學期數(shù)學知識點歸納》,供大家學習參考。





  【篇一】

  1、圓的有關概念:

  (1)、確定一個圓的要素是圓心和半徑。

  (2)①連結圓上任意兩點的線段叫做弦。②經過圓心的弦叫做直徑。③圓上任意兩點間的部分叫做圓弧,簡稱弧。④小于半圓周的圓弧叫做劣弧。⑤大于半圓周的圓弧叫做優(yōu)弧。⑥在同圓或等圓中,能夠互相重合的弧叫做等弧。⑦頂點在圓上,并且兩邊和圓相交的角叫圓周角。⑧經過三角形三個頂點可以畫一個圓,并且只能畫一個,經過三角形三個頂點的圓叫做三角形的外接圓,三角形外接圓的圓心叫做這個三角形的外心,這個三角形叫做這個圓的內接三角形,外心是三角形各邊中垂線的交點;直角三角形外接圓半徑等于斜邊的一半。⑨與三角形各邊都相切的圓叫做三角形的內切圓,三角形的內切圓的圓心叫做三角形的內心,這個三角形叫做圓外切三角形,三角形的內心就是三角形三條內角平分線的交點。

  2、圓的有關性質

  (1)定理在同圓或等圓中,如果圓心角相等,那么它所對的弧相等,所對的弦相等,所對的弦的弦心距相等。推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對的其余各組量都分別相等。

  (2)垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。

  推論1:①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧。③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧。

  推論2:圓的兩條平行弦所夾的弧相等。

  (3)圓周角定理:一條弧所對的圓周角等于該弧所對的圓心角的一半。推論1在同圓或等圓中,同弧或等弧所對的圓周角相等,相等的圓周角所對的弧也相等。推論2半圓或直徑所對的圓周角都相等,都等于90。90的圓周角所對的弦是圓的直徑。推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。

  (4)切線的判定與性質:判定定理:經過半徑的外端且垂直與這條半徑的直線是圓的切線。性質定理:圓的切線垂直于經過切點的半徑;經過圓心且垂直于切線的直線必經過切點;經過切點切垂直于切線的直線必經過圓心。

  (5)定理:不在同一條直線上的三個點確定一個圓。

  (6)圓的切線上某一點與切點之間的線段的長叫做這點到圓的切線長;切線長定理:從圓外一點可以引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分這兩條切線的夾角。

  (7)圓內接四邊形對角互補,一個外角等于內對角;圓外切四邊形對邊和相等;

  (8)弦切角定理:弦切角等于它所它所夾弧對的圓周角。

  (9)和圓有關的比例線段:相交弦定理:圓內的兩條相交弦,被交點分成的兩條線段長的積相等。如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項。切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項。從圓外一點引圓的兩條割線,這一點到每條割線與圓交點的兩條線段長的積相等。

  (10)兩圓相切,連心線過切點;兩圓相交,連心線垂直平分公共弦。

  【篇二】

  一、相似三角形(7個考點)

  考點1:相似三角形的概念、相似比的意義、畫圖形的放大和縮小

  考核要求:(1)理解相似形的概念;(2)掌握相似圖形的特點以及相似比的意義,能將已知圖形按照要求放大和縮小.

  考點2:平行線分線段成比例定理、三角形一邊的平行線的有關定理

  考核要求:理解并利用平行線分線段成比例定理解決一些幾何證明和幾何計算.

  注意:被判定平行的一邊不可以作為條件中的對應線段成比例使用.

  考點3:相似三角形的概念

  考核要求:以相似三角形的概念為基礎,抓住相似三角形的特征,理解相似三角形的定義.

  考點4:相似三角形的判定和性質及其應用

  考核要求:熟練掌握相似三角形的判定定理(包括預備定理、三個判定定理、直角三角形相似的判定定理)和性質,并能較好地應用.

  考點5:三角形的重心

  考核要求:知道重心的定義并初步應用.

  考點6:向量的有關概念

  考點7:向量的加法、減法、實數(shù)與向量相乘、向量的線性運算

  考核要求:掌握實數(shù)與向量相乘、向量的線性運算

  二、銳角三角比(2個考點)

  考點8:銳角三角比(銳角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值.

  考點9:解直角三角形及其應用

  考核要求:(1)理解解直角三角形的意義;(2)會用銳角互余、銳角三角比和勾股定理等解直角三角形和解決一些簡單的實際問題,尤其應當熟練運用特殊銳角的三角比的值解直角三角形.

  三、二次函數(shù)(4個考點)

  考點10:函數(shù)以及函數(shù)的定義域、函數(shù)值等有關概念,函數(shù)的表示法,常值函數(shù)

  考核要求:(1)通過實例認識變量、自變量、因變量,知道函數(shù)以及函數(shù)的定義域、函數(shù)值等概念;(2)知道常值函數(shù);(3)知道函數(shù)的表示方法,知道符號的意義.

  考點11:用待定系數(shù)法求二次函數(shù)的解析式

  考核要求:(1)掌握求函數(shù)解析式的方法;(2)在求函數(shù)解析式中熟練運用待定系數(shù)法.

  注意求函數(shù)解析式的步驟:一設、二代、三列、四還原.

  考點12:畫二次函數(shù)的圖像

  考核要求:(1)知道函數(shù)圖像的意義,會在平面直角坐標系中用描點法畫函數(shù)圖像;(2)理解二次函數(shù)的圖像,體會數(shù)形結合思想;(3)會畫二次函數(shù)的大致圖像.

  考點13:二次函數(shù)的圖像及其基本性質

  考核要求:(1)借助圖像的直觀、認識和掌握一次函數(shù)的性質,建立一次函數(shù)、二元一次方程、直線之間的聯(lián)系;(2)會用配方法求二次函數(shù)的頂點坐標,并說出二次函數(shù)的有關性質.

  注意:(1)解題時要數(shù)形結合;(2)二次函數(shù)的平移要化成頂點式.

  四、圓的相關概念(6個考點)

  考點14:圓心角、弦、弦心距的概念

  考核要求:清楚地認識圓心角、弦、弦心距的概念,并會用這些概念作出正確的判斷.

  考點15:圓心角、弧、弦、弦心距之間的關系

  考核要求:認清圓心角、弧、弦、弦心距之間的關系,在理解有關圓心角、弧、弦、弦心距之間的關系的定理及其推論的基礎上,運用定理進行初步的幾何計算和幾何證明.

  考點16:垂徑定理及其推論

  垂徑定理及其推論是圓這一板塊中最重要的知識點之一.

  考點17:直線與圓、圓與圓的位置關系及其相應的數(shù)量關系

  直線與圓的位置關系可從與之間的關系和交點的個數(shù)這兩個側面來反映.在圓與圓的位置關系中,常需要分類討論求解.

  考點18:正多邊形的有關概念和基本性質

  考核要求:熟悉正多邊形的有關概念(如半徑、邊心距、中心角、外角和),并能熟練地運用正多邊形的基本性質進行推理和計算,在正多邊形的計算中,常常利用正多邊形的半徑、邊心距和邊長的一半構成的直角三角形,將正多邊形的計算問題轉化為直角三角形的計算問題.

  考點19:畫正三、四、六邊形.

  考核要求:能用基本作圖工具,正確作出正三、四、六邊形.

  【篇三】

  第五章方程(組)

  ★重點★一元一次、一元二次方程,二元一次方程組的解法;方程的有關應用題(特別是行程、工程問題)

  ☆內容提要☆

  一、基本概念

  1.方程、方程的解(根)、方程組的解、解方程(組)

  2.分類:

  二、解方程的依據(jù)-等式性質

  1.a=b←→a+c=b+c

  2.a=b←→ac=bc(c≠0)

  三、解法

  1.一元一次方程的解法:去分母→去括號→移項→合并同類項→

  系數(shù)化成1→解。

  2.元一次方程組的解法:⑴基本思想:"消元"⑵方法:①代入法

  ②加減法

  四、一元二次方程

  1.定義及一般形式:

  2.解法:⑴直接開平方法(注意特征)

  ⑵配方法(注意步驟-推倒求根公式)

 、枪椒ǎ

 、纫蚴椒纸夥(特征:左邊=0)

  3.根的判別式:

  4.根與系數(shù)頂?shù)年P系:

  逆定理:若,則以為根的一元二次方程是:。

  5.常用等式:

  五、可化為一元二次方程的方程

  1.分式方程

  ⑴定義

 、苹舅枷耄

  ⑶基本解法:①去分母法②換元法(如,)

  ⑷驗根及方法

  2.無理方程

 、哦x

  ⑵基本思想:

 、腔窘夥ǎ孩俪朔椒(注意技巧!!)②換元法(例,)⑷驗根及方法

  3.簡單的二元二次方程組

  由一個二元一次方程和一個二元二次方程組成的二元二次方程組都可用代入法解。

  六、列方程(組)解應用題

  一概述

  列方程(組)解應用題是中學數(shù)*系實際的一個重要方面。其具體步驟是:

 、艑忣}。理解題意。弄清問題中已知量是什么,未知量是什么,問題給出和涉及的相等關系是什

  么。

 、圃O元(未知數(shù))。①直接未知數(shù)②間接未知數(shù)(往往二者兼用)。一般來說,未知數(shù)越多,方程越易列,但越難解。

 、怯煤粗獢(shù)的代數(shù)式表示相關的量。

 、葘ふ蚁嗟汝P系(有的由題目給出,有的由該問題所涉及的等量關系給出),列方程。一般地,未知數(shù)個數(shù)與方程個數(shù)是相同的。

 、山夥匠碳皺z驗。

 、蚀鸢浮

  綜上所述,列方程(組)解應用題實質是先把實際問題轉化為數(shù)學問題(設元、列方程),在由數(shù)學問題的解決而導致實際問題的解決(列方程、寫出答案)。在這個過程中,列方程起著承前啟后的作用。因此,列方程是解應用題的關鍵。

  二常用的相等關系

  1.行程問題(勻速運動)

  基本關系:s=vt

 、畔嘤鰡栴}(同時出發(fā)):

 、谱芳皢栴}(同時出發(fā)):

  若甲出發(fā)t小時后,乙才出發(fā),而后在B處追上甲,則

 、撬泻叫校;

  2.配料問題:溶質=溶液×濃度

  溶液=溶質+溶劑

  3.增長率問題:

  4.工程問題:基本關系:工作量=工作效率×工作時間(常把工作量看著單位"1")。

  5.幾何問題:常用勾股定理,幾何體的面積、體積公式,相似形及有關比例性質等。

  三注意語言與解析式的互化

  如,"多"、"少"、"增加了"、"增加為(到)"、"同時"、"擴大為(到)"、"擴大了"、……

  又如,一個三位數(shù),百位數(shù)字為a,十位數(shù)字為b,個位數(shù)字為c,則這個三位數(shù)為:100a+10b+c,而不是abc。

  四注意從語言敘述中寫出相等關系。

  如,x比y大3,則x-y=3或x=y+3或x-3=y。又如,x與y的差為3,則x-y=3。五注意單位換算

  如,"小時""分鐘"的換算;s、v、t單位的一致等。