国产18禁黄网站免费观看,99爱在线精品免费观看,粉嫩metart人体欣赏,99久久99精品久久久久久,6080亚洲人久久精品

高一下冊數(shù)學必修二教案

時間:2020-07-06 14:21:00   來源:無憂考網(wǎng)     [字體: ]

【#高一# #高一下冊數(shù)學必修二教案#】高一新生要根據(jù)自己的條件,以及高中階段學科知識交叉多、綜合性強,以及考查的知識和思維觸點廣的特點,找尋一套行之有效的學習方法。今天®無憂考網(wǎng)為各位同學整理了《高一下冊數(shù)學必修二教案》,希望對您的學習有所幫助!

【篇一】高一下冊數(shù)學必修二教案


  一、教學目標:

  1.通過高速公路上的實際例子,引起積極的思考和交流,從而認識到生活中處處可以遇到變量間的依賴關系.能夠利用初中對函數(shù)的認識,了解依賴關系中有的是函數(shù)關系,有的則不是函數(shù)關系.

  2.培養(yǎng)廣泛聯(lián)想的能力和熱愛數(shù)學的態(tài)度.

  二、教學重點:

  在于讓學生領悟生活中處處有變量,變量之間充滿了關系

  教學難點:培養(yǎng)廣泛聯(lián)想的能力和熱愛數(shù)學的態(tài)度

  三、教學方法:

  探究交流法

  四、教學過程

  (一)、知識探索:

  閱讀課文P25頁。實例分析:書上在高速公路情境下的問題。

  在高速公路情景下,你能發(fā)現(xiàn)哪些函數(shù)關系?

  2.對問題3,儲油量v對油面高度h、油面寬度w都存在依賴關系,兩種依賴關系都有函數(shù)關系嗎?

  問題小結:

  1.生活中變量及變量之間的依賴關系隨處可見,并非有依賴關系的兩個變量都有函數(shù)關系,只有滿足對于一個變量的每一個值,另一個變量都有確定的值與之對應,才稱它們之間有函數(shù)關系。

  2.構成函數(shù)關系的兩個變量,必須是對于自變量的每一個值,因變量都有確定的y值與之對應。

  3.確定變量的依賴關系,需分清誰是自變量,誰是因變量,如果一個變量隨著另一個變量的變化而變化,那么這個變量是因變量,另一個變量是自變量。

  (二)、新課探究——函數(shù)概念

  1.初中關于函數(shù)的定義:

  2.從集合的觀點出發(fā),函數(shù)定義:

  給定兩個非空數(shù)集A和B,如果按照某個對應關系f,對于A中的任何一個數(shù)x,在集合B中都存在確定的數(shù)f(x)與之對應,那么就把這種對應關系f叫做定義在A上的函數(shù),記作或f:A→B,或y=f(x),x∈A.;

  此時x叫做自變量,集合A叫做函數(shù)的定義域,集合{f(x)︱x∈A}叫作函數(shù)的值域。習慣上我們稱y是x的函數(shù)。

  定義域,值域,對應法則

  4.函數(shù)值

  當x=a時,我們用f(a)表示函數(shù)y=f(x)的函數(shù)值。

【篇二】高一下冊數(shù)學必修二教案

  一、教學過程

  1.復習

  反函數(shù)的概念、反函數(shù)求法、互為反函數(shù)的函數(shù)定義域值域的關系。

  求出函數(shù)y=x3的反函數(shù)。

  2.新課

  先讓學生用幾何畫板畫出y=x3的圖象,學生紛紛動手,很快畫出了函數(shù)的圖象。有部分學生發(fā)出了“咦”的一聲,因為他們得到了如下的圖象:

  教師在畫出上述圖象的學生中選定生1,將他的屏幕內容通過教學系統(tǒng)放到其他同學的屏幕上,很快有學生作出反應。

  生2:這是y=x3的反函數(shù)y=的圖象。

  師:對,但是怎么會得到這個圖象,請大家討論。

 。▽W生展開討論,但找不出原因。)

  師:我們請生1再給大家演示一下,大家?guī)退艺以颉?/p>

  (生1將他的制作過程重新重復了。)

  生3:問題出在他選擇的次序不對。

  師:哪個次序?

  生3:作點B前,選擇xA和xA3為B的坐標時,他先選擇xA3,后選擇xA,作出來的點的坐標為(xA3,xA),而不是(xA,xA3)。

  師:是這樣嗎?我們請生1再做。

  (這次生1在做的過程當中,按xA、xA3的次序選擇,果然得到函數(shù)y=x3的圖象。)

  師:看來問題確實是出在這個地方,那么請同學再想想,為什么他采用了錯誤的次序后,恰好得到了y=x3的反函數(shù)y=的圖象呢?

  (學生再次陷入思考,一會兒有學生舉手。)

  師:我們請生4來告訴大家。

  生4:因為他這樣做,正好是將y=x3上的點B(x,y)的橫坐標x與縱坐標y交換,而y=x3的反函數(shù)也正好是將x與y交換。

  師:完全正確。下面我們進一步研究y=x3的圖象及其反函數(shù)y=的圖象的關系,同學們能不能看出這兩個函數(shù)的圖象有什么樣的關系?

 。ǘ鄶(shù)學生回答可由y=x3的圖象得到y(tǒng)=的圖象,于是教師進一步追問。)

  師:怎么由y=x3的圖象得到y(tǒng)=的圖象?

  生5:將y=x3的圖象上點的橫坐標與縱坐標交換,可得到y(tǒng)=的圖象。

  師:將橫坐標與縱坐標互換?怎么換?

 。▽W生一時未能明白教師的意思,場面一下子冷了下來,教師不得不將問題進一步明確。)

  師:我其實是想問大家這兩個函數(shù)的圖象有沒有對稱關系,有的話,是什么樣的對稱關系?

 。▽W生重新開始觀察這兩個函數(shù)的圖象,一會兒有學生舉手。)

  生6:我發(fā)現(xiàn)這兩個圖象應是關于某條直線對稱。

  師:能說說是關于哪條直線對稱嗎?

  生6:我還沒找出來。

 。ń酉聛,教師引導學生利用幾何畫板找出兩函數(shù)圖象的對稱軸,畫出如下圖形,如圖2所示:)

  學生通過移動點A(點B、C隨之移動)后發(fā)現(xiàn),BC的中點M在同一條直線上,這條直線就是兩函數(shù)圖象的對稱軸,在追蹤M點后,發(fā)現(xiàn)中點的軌跡是直線y=x。

  生7:y=x3的圖象及其反函數(shù)y=的圖象關于直線y=x對稱。

  師:這個結論有一般性嗎?其他函數(shù)及其反函數(shù)的圖象,也有這種對稱關系嗎?請同學們用其他函數(shù)來試一試。

 。▽W生紛紛畫出其他函數(shù)與其反函數(shù)的圖象進行驗證,后大家一致得出結論:函數(shù)及其反函數(shù)的圖象關于直線y=x對稱。)

  教師巡視全班時已經(jīng)發(fā)現(xiàn)這個問題,將這個圖象傳給全班學生后,幾乎所有人都看出了問題所在:圖中函數(shù)y=x2(x∈R)沒有反函數(shù),②也不是函數(shù)的圖象。

  后教師與學生一起總結:

  點(x,y)與點(y,x)關于直線y=x對稱;

  函數(shù)及其反函數(shù)的圖象關于直線y=x對稱。

  二、反思與點評

  1.在開學初,我就教學幾何畫板4。0的用法,在教函數(shù)圖象畫法的過程當中,發(fā)現(xiàn)學生根據(jù)選定坐標作點時,不太注意選擇橫坐標與縱坐標的順序,本課設計起源于此。雖然幾何畫板4。04中,能直接根據(jù)函數(shù)解析式畫出圖象,但這樣反而不能揭示圖象對稱的本質,所以本節(jié)課教學中,我有意選擇了幾何畫板4。0進行教學。

  2.荷蘭數(shù)學教育家弗賴登塔爾認為,數(shù)學學習過程當中,可借助于生動直觀的形象來引導人們的思想過程,但常常由于圖形或想象的錯誤,使人們的思維誤入歧途,因此我們既要借助直觀,但又必須在一定條件下擺脫直觀而形成抽象概念,要注意過于直觀的例子常常會影響學生正確理解比較抽象的概念。

  計算機作為一種現(xiàn)代信息技術工具,在直觀化方面有很強的表現(xiàn)能力,如在函數(shù)的圖象、圖形變換等方面,利用計算機都可得到其他直觀工具不可能有的效果;如果只是為了直觀而使用計算機,但不能達到更好地理解抽象概念,促進學生思維的目的的話,這樣的教學中,計算機多只是一種普通的直觀工具而已。

  在本節(jié)課的教學中,計算機更多的是作為學生探索發(fā)現(xiàn)的工具,學生不但發(fā)現(xiàn)了函數(shù)與其反函數(shù)圖象間的對稱關系,而且在更深層次上理解了反函數(shù)的概念,對反函數(shù)的存在性、反函數(shù)的求法等方面也有了更深刻的理解。

  當前計算機用于中學數(shù)學的主要形式還是以輔助為主,更多的是把計算機作為一種直觀工具,有時甚至只是作為電子黑板使用,今后的發(fā)展方向應是:將計算機作為學生的認知工具,讓學生通過計算機發(fā)現(xiàn)探索,甚至利用計算機來做數(shù)學,在此過程當中更好地理解數(shù)學概念,促進數(shù)學思維,發(fā)展數(shù)學創(chuàng)新能力。

  3.在引出兩個函數(shù)圖象對稱關系的時候,問題設計不甚妥當,本來是想要學生回答兩個函數(shù)圖象對稱的關系,但學生誤以為是問如何由y=x3的圖象得到y(tǒng)=的圖象,以致將學生引入歧途。這樣的問題在今后的教學中是必須力求避免的。

【篇三】高一下冊數(shù)學必修二教案

  一、教學目標

  1、知識與技能:

  (1)通過實物操作,增強學生的直觀感知。

 。2)能根據(jù)幾何結構特征對空間物體進行分類。

 。3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。

  (4)會表示有關于幾何體以及柱、錐、臺的分類。

  2、過程與方法:

 。1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結構特征。

 。2)讓學生觀察、討論、歸納、概括所學的知識。

  3、情感態(tài)度與價值觀:

 。1)使學生感受空間幾何體存在于現(xiàn)實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。

 。2)培養(yǎng)學生的空間想象能力和抽象括能力。

  二、教學重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。

  難點:柱、錐、臺、球的結構特征的概括。

  三、教學用具

 。1)學法:觀察、思考、交流、討論、概括。

  (2)實物模型、投影儀。

  四、教學過程

 。ㄒ唬﹦(chuàng)設情景,揭示課題

  1、由六根火柴多可搭成幾個三角形?(空間:4個)

  2、在我們周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結構特征如何?

  3、展示具有柱、錐、臺、球結構特征的空間物體。

  問題:請根據(jù)某種標準對以上空間物體進行分類。

 。ǘ、研探新知

  空間幾何體:多面體(面、棱、頂點):棱柱、棱錐、棱臺;

  旋轉體(軸):圓柱、圓錐、圓臺、球。

  1、棱柱的結構特征:

 。1)觀察棱柱的幾何物體以及投影出棱柱的圖片,

  思考:它們各自的特點是什么?共同特點是什么?

  (學生討論)

 。2)棱柱的主要結構特征(棱柱的概念):

 、儆袃蓚面互相平行;②其余各面都是平行四邊形;③每相鄰兩上四邊形的公共邊互相平行。

 。3)棱柱的表示法及分類:

 。4)相關概念:底面(底)、側面、側棱、頂點。

  2、棱錐、棱臺的結構特征:

 。1)實物模型演示,投影圖片;

  (2)以類似的方法,根據(jù)出棱錐、棱臺的結構特征,并得出相關的概念、分類以及表示。

  棱錐:有一個面是多邊形,其余各面都是有一個公共頂點的三角形。

  棱臺:且一個平行于棱錐底面的平面去截棱錐,底面與截面之間的部分。

  3、圓柱的結構特征:

 。1)實物模型演示,投影圖片——如何得到圓柱?

 。2)根據(jù)圓柱的概念、相關概念及圓柱的表示。

  4、圓錐、圓臺、球的結構特征:

 。1)實物模型演示,投影圖片

  ——如何得到圓錐、圓臺、球?

 。2)以類似的方法,根據(jù)圓錐、圓臺、球的結構特征,以及相關概念和表示。

  5、柱體、錐體、臺體的概念及關系:

  探究:棱柱、棱錐、棱臺都是多面體,它們在結構上有哪些相同點和不同點?三者的關系如何?當?shù)酌姘l(fā)生變化時,它們能否互相轉化?

  圓柱、圓錐、圓臺呢?

  6、簡單組合體的結構特征:

 。1)簡單組合體的構成:由簡單幾何體拼接或截去或挖去一部分而成。

 。2)實物模型演示,投影圖片——說出組成這些物體的幾何結構特征。

 。3)列舉身邊物體,說出它們是由哪些基本幾何體組成的。

 。ㄈ┡烹y解惑,發(fā)展思維

  1、有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱?(反例說明)

  2、棱柱的何兩個平面都可以作為棱柱的底面嗎?

  3、圓柱可以由矩形旋轉得到,圓錐可以由直角三角形旋轉得到,圓臺可以由什么圖形旋轉得到?如何旋轉?

 。ㄋ模╈柟躺罨

  練習:課本P7練習1、2;課本P8習題1.1第1、2、3、4、5題

 。ㄎ澹w納整理:由學生整理學習了哪些內容