国产18禁黄网站免费观看,99爱在线精品免费观看,粉嫩metart人体欣赏,99久久99精品久久久久久,6080亚洲人久久精品

高二年級復(fù)數(shù)知識點總結(jié)

時間:2021-02-26 15:11:00   來源:無憂考網(wǎng)     [字體: ]
【#高二# #高二年級復(fù)數(shù)知識點總結(jié)#】高二本身的知識體系而言,它主要是對高一知識的深入和新知識模塊的補(bǔ)充。以數(shù)學(xué)為例,除去不同學(xué)校教學(xué)進(jìn)度的不同,我們會在高二接觸到更為深入的函數(shù),也將開始學(xué)習(xí)從未接觸過的復(fù)數(shù)、圓錐曲線等題型。®無憂考網(wǎng)高二頻道為你整理了《高二年級復(fù)數(shù)知識點總結(jié)》希望對你有所幫助!

【篇一】高二年級復(fù)數(shù)知識點總結(jié)


  復(fù)數(shù)定義

  我們把形如a+bi(a,b均為實數(shù))的數(shù)稱為復(fù)數(shù),其中a稱為實部,b稱為虛部,i稱為虛數(shù)單位。當(dāng)虛部等于零時,這個復(fù)數(shù)可以視為實數(shù);當(dāng)z的虛部不等于零時,實部等于零時,常稱z為純虛數(shù)。復(fù)數(shù)域是實數(shù)域的代數(shù)閉包,也即任何復(fù)系數(shù)多項式在復(fù)數(shù)域中總有根。

  復(fù)數(shù)表達(dá)式

  虛數(shù)是與任何事物沒有聯(lián)系的,是絕對的,所以符合的表達(dá)式為:

  a=a+ia為實部,i為虛部

  復(fù)數(shù)運算法則

  加法法則:(a+bi)+(c+di)=(a+c)+(b+d)i;

  減法法則:(a+bi)-(c+di)=(a-c)+(b-d)i;

  乘法法則:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;

  除法法則:(a+bi)/(c+di)=[(ac+bd)/(c2+d2)]+[(bc-ad)/(c2+d2)]i.

  例如:[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=0,最終結(jié)果還是0,也就在數(shù)字中沒有復(fù)數(shù)的存在。[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=z是一個函數(shù)。

  復(fù)數(shù)與幾何

 、賻缀涡问

  復(fù)數(shù)z=a+bi被復(fù)平面上的點z(a,b)確定。這種形式使復(fù)數(shù)的問題可以借助圖形來研究。也可反過來用復(fù)數(shù)的理論解決一些幾何問題。

 、谙蛄啃问

  復(fù)數(shù)z=a+bi用一個以原點O(0,0)為起點,點Z(a,b)為終點的向量OZ表示。這種形式使復(fù)數(shù)四則運算得到恰當(dāng)?shù)膸缀谓忉尅?/p>

  ③三角形式

  復(fù)數(shù)z=a+bi化為三角形式

【篇二】高二年級復(fù)數(shù)知識點總結(jié)


  復(fù)數(shù)的概念:

  形如a+bi(a,b∈r)的數(shù)叫復(fù)數(shù),其中i叫做虛數(shù)單位。全體復(fù)數(shù)所成的集合叫做復(fù)數(shù)集,用字母c表示。

  復(fù)數(shù)的表示:

  復(fù)數(shù)通常用字母z表示,即z=a+bi(a,b∈r),這一表示形式叫做復(fù)數(shù)的代數(shù)形式,其中a叫復(fù)數(shù)的實部,b叫復(fù)數(shù)的虛部。

  復(fù)數(shù)的幾何意義:

  復(fù)平面、實軸、虛軸:

  點z的橫坐標(biāo)是a,縱坐標(biāo)是b,復(fù)數(shù)z=a+bi(a、b∈r)可用點z(a,b)表示,這個建立了直角坐標(biāo)系來表示復(fù)數(shù)的平面叫做復(fù)平面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的點都表示實數(shù),除原點外,虛軸上的點都表示純虛數(shù)

  復(fù)數(shù)的幾何意義:復(fù)數(shù)集c和復(fù)平面內(nèi)所有的點所成的集合是一一對應(yīng)關(guān)系,即

  這是因為,每一個復(fù)數(shù)有復(fù)平面內(nèi)惟一的一個點和它對應(yīng);反過來,復(fù)平面內(nèi)的每一個點,有惟一的一個復(fù)數(shù)和它對應(yīng)。

  這就是復(fù)數(shù)的一種幾何意義,也就是復(fù)數(shù)的另一種表示方法,即幾何表示方法。

  復(fù)數(shù)的模:

  復(fù)數(shù)z=a+bi(a、b∈r)在復(fù)平面上對應(yīng)的點z(a,b)到原點的距離叫復(fù)數(shù)的模,記為|z|,即|z|=

  虛數(shù)單位i:

  它的平方等于-1,即i2=-1;

  實數(shù)可以與它進(jìn)行四則運算,進(jìn)行四則運算時,原有加、乘運算律仍然成立

  i與-1的關(guān)系:i就是-1的一個平方根,即方程x2=-1的一個根,方程x2=-1的另一個根是-i。

  i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

  復(fù)數(shù)模的性質(zhì):

  復(fù)數(shù)與實數(shù)、虛數(shù)、純虛數(shù)及0的關(guān)系:

  對于復(fù)數(shù)a+bi(a、b∈r),當(dāng)且僅當(dāng)b=0時,復(fù)數(shù)a+bi(a、b∈r)是實數(shù)a;當(dāng)b≠0時,復(fù)數(shù)z=a+bi叫做虛數(shù);當(dāng)a=0且b≠0時,z=bi叫做純虛數(shù);當(dāng)且僅當(dāng)a=b=0時,z就是實數(shù)0。

【篇三】高二年級復(fù)數(shù)知識點總結(jié)


  復(fù)數(shù)中的難點

  (1)復(fù)數(shù)的向量表示法的運算.對于復(fù)數(shù)的向量表示有些學(xué)生掌握得不好,對向量的運算的幾何意義的靈活掌握有一定的困難,對此應(yīng)認(rèn)真體會復(fù)數(shù)向量運算的幾何意義,對其靈活地加以證明.

  (2)復(fù)數(shù)三角形式的乘方和開方.有部分學(xué)生對運算法則知道,但對其靈活地運用有一定的困難,特別是開方運算,應(yīng)對此認(rèn)真地加以訓(xùn)練.

  (3)復(fù)數(shù)的輻角主值的求法.

  (4)利用復(fù)數(shù)的幾何意義靈活地解決問題.復(fù)數(shù)可以用向量表示,同時復(fù)數(shù)的模和輻角都具有幾何意義,對他們的理解和應(yīng)用有一定難度,應(yīng)認(rèn)真加以體會.

  復(fù)數(shù)中的重點

  (1)理解好復(fù)數(shù)的概念,弄清實數(shù)、虛數(shù)、純虛數(shù)的不同點.

  (2)熟練掌握復(fù)數(shù)三種表示法,以及它們間的互化,并能準(zhǔn)確地求出復(fù)數(shù)的模和輻角.復(fù)數(shù)有代數(shù),向量和三角三種表示法.特別是代數(shù)形式和三角形式的互化,以及求復(fù)數(shù)的模和輻角在解決具體問題時經(jīng)常用到,是一個重點內(nèi)容.

  (3)復(fù)數(shù)的三種表示法的各種運算,在運算中重視共軛復(fù)數(shù)以及模的有關(guān)性質(zhì).復(fù)數(shù)的運算是復(fù)數(shù)中的主要內(nèi)容,掌握復(fù)數(shù)各種形式的運算,特別是復(fù)數(shù)運算的幾何意義更是重點內(nèi)容.

  (4)復(fù)數(shù)集中一元二次方程和二項方程的解法.