国产18禁黄网站免费观看,99爱在线精品免费观看,粉嫩metart人体欣赏,99久久99精品久久久久久,6080亚洲人久久精品

數(shù)學九年級期中上冊知識點

時間:2022-04-12 17:36:00   來源:無憂考網     [字體: ]

#初中三年級# #數(shù)學九年級期中上冊知識點#】學習是一架保持平衡的天平,一邊是付出,一邊是收獲,少付出少收獲,多付出多收獲,不勞必定無獲!要想取得理想的成績,勤奮至關重要!只有勤奮學習,才能成就美好人生!勤奮出天才,這是一面永不褪色的旗幟,它永遠激勵我們不斷追求、不斷探索。有書好好讀,有書趕快讀,讀書的時間不多。只要我們刻苦拼搏、一心向上,就一定能取得令人滿意的成績。下面是®無憂考網為您整理的《數(shù)學九年級期中上冊知識點》,僅供大家參考。



  

1.數(shù)學九年級期中上冊知識點

  一元二次方程

  1、認識一元二次方程

  只含有一個未知數(shù)的整式方程,且都可以化為ax2+bx+c=0

  (a、b、c為常數(shù),a≠0)的形式,這樣的方程叫一元二次方程。

  把ax2+bx+c=0(a、b、c為常數(shù),a≠0)稱為一元二次方程的一般形式,a為二次項系數(shù);b為一次項系數(shù);c為常數(shù)項。

  2、用配方法求解一元二次方程

 、倥浞椒<即將其變?yōu)?x+m)2=0的形式>

  配方法解一元二次方程的基本步驟:

  把方程化成一元二次方程的一般形式;

  將二次項系數(shù)化成1;

  把常數(shù)項移到方程的右邊;

  兩邊加上一次項系數(shù)的一半的平方;

  把方程轉化成的形式;

  兩邊開方求其根。

  3、用公式法求解一元二次方程

 、诠椒(注意在找abc時須先把方程化為一般形式)

  4、用因式分解法求解一元二次方程

 、鄯纸庖蚴椒

  把方程的一邊變成0,另一邊變成兩個一次因式的乘積來求解。(主要包括“提公因式”和“十字相乘”)

  5、一元二次方程的根與系數(shù)的關系

 、俑c系數(shù)的關系:

  當b2-4ac>0時,方程有兩個不等的實數(shù)根;

  當b2-4ac=0時,方程有兩個相等的實數(shù)根;

  當b2-4ac<0時,方程無實數(shù)根。

 、谌绻辉畏匠蘟x2+bx+c=0的兩根分別為x1、x2,則有:

 、垡辉畏匠痰母c系數(shù)的關系的作用:

  已知方程的一根,求另一根;

  不解方程,求二次方程的根x1、x2的對稱式的值,特別注意以下公式:

  已知方程的兩根x1、x2,可以構造一元二次方程:

  x2-(x1+x2)x+x1x2=0

  已知兩數(shù)x1、x2的和與積,求此兩數(shù)的問題,可以轉化為求一元二次方程x2-(x1+x2)x+x1x2=0的根

  6、應用一元二次方程

  在利用方程來解應用題時,主要分為兩個步驟:

  設未知數(shù)(在設未知數(shù)時,大多數(shù)情況只要設問題為x;但也有時也須根據(jù)已知條件及等量關系等諸多方面考慮);

  尋找等量關系(一般地,題目中會含有一表述等量關系的句子,只須找到此句話即可根據(jù)其列出方程)。

  

2.數(shù)學九年級期中上冊知識點

  1、絕對值

  一個數(shù)的絕對值就是表示這個數(shù)的點與原點的距離,|a|≥0。零的絕對值時它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。正數(shù)大于零,負數(shù)小于零,正數(shù)大于一切負數(shù),兩個負數(shù),絕對值大的反而小。

 。1)一個正實數(shù)的絕對值是它本身;一個負實數(shù)的絕對值是它的相反數(shù);0的絕對值是0。

  (2)實數(shù)的絕對值是一個非負數(shù),從數(shù)軸上看,一個實數(shù)的絕對值就是數(shù)軸上表示這個數(shù)的點到原點的距離。

 。3)幾個非負數(shù)的和等于零則每個非負數(shù)都等于零。

  注意:│a│≥0,符號"││"是"非負數(shù)"的標志;數(shù)a的絕對值只有一個;處理任何類型的題目,只要其中有"││"出現(xiàn),其關鍵一步是去掉"││"符號。

  2、解一元二次方程

  解一元二次方程的基本思想方法是通過“降次”將它化為兩個一元一次方程。

 。1)直接開平方法:

  用直接開平方法解形如(x-m)2=n(n≥0)的方程,其解為x=±m(xù)。

  直接開平方法就是平方的逆運算。通常用根號表示其運算結果。

 。2)配方法

  通過配成完全平方式的方法,得到一元二次方程的根的方法。這種解一元二次方程的方法稱為配方法,配方的依據(jù)是完全平方公式。

  1)轉化:將此一元二次方程化為ax^2+bx+c=0的形式(即一元二次方程的一般形式)。

  2)系數(shù)化1:將二次項系數(shù)化為1。

  3)移項:將常數(shù)項移到等號右側。

  4)配方:等號左右兩邊同時加上一次項系數(shù)一半的平方。

  5)變形:將等號左邊的代數(shù)式寫成完全平方形式。

  6)開方:左右同時開平方。

  7)求解:整理即可得到原方程的根。

 。3)公式法

  公式法:把一元二次方程化成一般形式,然后計算判別式△=b2-4ac的值,當b2-4ac≥0時,把各項系數(shù)a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。

  3、圓的必考知識點

 。1)圓

  在一個平面內,一動點以一定點為中心,以一定長度為距離旋轉一周所形成的封閉曲線叫做圓。圓有無數(shù)條對稱軸。

  (2)圓的相關特點

  1)徑

  連接圓心和圓上的任意一點的線段叫做半徑,字母表示為r。

  通過圓心并且兩端都在圓上的線段叫做直徑,字母表示為d。

  直徑所在的直線是圓的對稱軸。在同一個圓中,圓的直徑d=2r。

  2)弦

  連接圓上任意兩點的線段叫做弦。在同一個圓內最長的弦是直徑。直徑所在的直線是圓的對稱軸,因此,圓的對稱軸有無數(shù)條。

  3)弧

  圓上任意兩點間的部分叫做圓弧,簡稱弧,以“⌒”表示。

  大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧,所以半圓既不是優(yōu)弧,也不是劣弧。優(yōu)弧一般用三個字母表示,劣弧一般用兩個字母表示。優(yōu)弧是所對圓心角大于180度的弧,劣弧是所對圓心角小于180度的弧。

  在同圓或等圓中,能夠互相重合的兩條弧叫做等弧。

  4)角

  頂點在圓心上的角叫做圓心角。

  頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。圓周角等于相同弧所對的圓心角的一半。

  

3.數(shù)學九年級期中上冊知識點

  1、數(shù)的分類及概念數(shù)系表:

  說明:分類的原則:1)相稱(不重、不漏);2)有標準。

  2、非負數(shù):正實數(shù)與零的統(tǒng)稱。(表為:x0)

  性質:若干個非負數(shù)的和為0,則每個非負數(shù)均為0。

  3、倒數(shù):①定義及表示法

 、谛再|:A.a1/a(a1);B.1/a中,aC.0

  4、相反數(shù):①定義及表示法

 、谛再|:A.a0時,aB.a與-a在數(shù)軸上的位置;C.和為0,商為-1。

  5、數(shù)軸:①定義(三要素)

 、谧饔茫篈.直觀地比較實數(shù)的大小;B.明確體現(xiàn)絕對值意義;C.建立點與實數(shù)的一一對應關系。

  6、奇數(shù)、偶數(shù)、質數(shù)、合數(shù)(正整數(shù)自然數(shù))

  定義及表示:

  奇數(shù):2n-1

  偶數(shù):2n(n為自然數(shù))

  7、絕對值:①定義(兩種):

  代數(shù)定義:

  幾何定義:數(shù)a的絕對值頂?shù)膸缀我饬x是實數(shù)a在數(shù)軸上所對應的點到原點的距離。

  ②│a│0,符號││是非負數(shù)的標志;③數(shù)a的絕對值只有一個;④處理任何類型的題目,只要其中有││出現(xiàn),其關鍵一步是去掉││符號。

  

4.數(shù)學九年級期中上冊知識點

  1、正方形的概念

  有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形。

  2、正方形的性質

  (1)具有平行四邊形、矩形、菱形的一切性質;

  (2)正方形的四個角都是直角,四條邊都相等;

  (3)正方形的兩條對角線相等,并且互相垂直平分,每一條對角線平分一組對角;

  (4)正方形是軸對稱圖形,有4條對稱軸;

  (5)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形,兩條對角線把正方形分成四個全等的小等腰直角三角形;

  (6)正方形的一條對角線上的一點到另一條對角線的兩端點的距離相等。

  3、正方形的判定

  (1)判定一個四邊形是正方形的主要依據(jù)是定義,途徑有兩種:

  先證它是矩形,再證有一組鄰邊相等。

  先證它是菱形,再證有一個角是直角。

  (2)判定一個四邊形為正方形的一般順序如下:

  先證明它是平行四邊形;

  再證明它是菱形(或矩形);

  最后證明它是矩形(或菱形)。

  

5.數(shù)學九年級期中上冊知識點

  特殊平行四邊形

  1、菱形的性質與判定

 、倭庑蔚亩x:

  一組鄰邊相等的平行四邊形叫做菱形。

  ②菱形的性質:

  具有平行四邊形的性質,且四條邊都相等,兩條對角線互相垂直平分,每一條對角線平分一組對角。

  菱形是軸對稱圖形,每條對角線所在的直線都是對稱軸。

 、哿庑蔚呐袆e方法:

  一組鄰邊相等的平行四邊形是菱形。

  對角線互相垂直的平行四邊形是菱形。

  四條邊都相等的四邊形是菱形。

  2、矩形的性質與判定

 、倬匦蔚亩x:

  有一個角是直角的平行四邊形叫矩形。矩形是特殊的平行四邊形。

  ②矩形的性質:

  具有平行四邊形的性質,且對角線相等,四個角都是直角。(矩形是軸對稱圖形,有兩條對稱軸)

 、劬匦蔚呐卸ǎ

  有一個內角是直角的平行四邊形叫矩形(根據(jù)定義)。

  對角線相等的平行四邊形是矩形。

  四個角都相等的四邊形是矩形。

 、芡普摚褐苯侨切涡边吷系闹芯等于斜邊的一半。

  3、正方形的性質與判定

 、僬叫蔚亩x:

  一組鄰邊相等的矩形叫做正方形。

 、谡叫蔚男再|:

  正方形具有平行四邊形、矩形、菱形的一切性質。(正方形是軸對稱圖形,有兩條對稱軸)

 、壅叫纬S玫呐卸ǎ

  有一個內角是直角的菱形是正方形;

  鄰邊相等的矩形是正方形;

  對角線相等的菱形是正方形;

  對角線互相垂直的矩形是正方形。

  ④正方形、矩形、菱形和平行邊形四者之間的關系

  ⑤梯形定義:

  一組對邊平行且另一組對邊不平行的四邊形叫做梯形。

  兩條腰相等的梯形叫做等腰梯形。

  一條腰和底垂直的梯形叫做直角梯形。

 、薜妊菪蔚男再|:

  等腰梯形同一底上的兩個內角相等,對角線相等。

  同一底上的兩個內角相等的梯形是等腰梯形。

  三角形的中位線平行于第三邊,并且等于第三邊的一半。

  夾在兩條平行線間的平行線段相等。

  在直角三角形中,斜邊上的中線等于斜邊的一半