高三數(shù)學(xué)必修二復(fù)習(xí)知識(shí)點(diǎn)
時(shí)間:2023-03-09 10:55:00 來(lái)源:無(wú)憂考網(wǎng) [字體:小 中 大]
【#高三# #高三數(shù)學(xué)必修二復(fù)習(xí)知識(shí)點(diǎn)#】其實(shí)任何學(xué)科的知識(shí)都是一樣的,學(xué)習(xí)任何一門(mén)學(xué)科,勤奮都是的學(xué)習(xí)方法,沒(méi)有之一,以下是©無(wú)憂考網(wǎng)整理的《高三數(shù)學(xué)必修二復(fù)習(xí)知識(shí)點(diǎn)》希望能夠幫助到大家。
1.高三數(shù)學(xué)必修二復(fù)習(xí)知識(shí)點(diǎn) 篇一
1、科學(xué)記數(shù)法:把一個(gè)數(shù)字寫(xiě)成的形式的記數(shù)方法。
2、統(tǒng)計(jì)圖:形象地表示收集到的數(shù)據(jù)的圖。
3、扇形統(tǒng)計(jì)圖:用圓和扇形來(lái)表示總體和部分的關(guān)系,扇形大小反映部分占總體的百分比的大小;在扇形統(tǒng)計(jì)圖中,每個(gè)部分占總體的百分比等于該部分對(duì)應(yīng)的扇形圓心角與360°的比。
4、條形統(tǒng)計(jì)圖:清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目。
5、折線統(tǒng)計(jì)圖:清楚地反映事物的變化情況。
6、確定事件包括:肯定會(huì)發(fā)生的必然事件和一定不會(huì)發(fā)生的不可能事件。
7、不確定事件:可能發(fā)生也可能不發(fā)生的事件;不確定事件發(fā)生的可能性大小不同;不確定。
8、事件的概率:可用事件結(jié)果除以所以可能結(jié)果求得理論概率。
9、有效數(shù)字:對(duì)于一個(gè)近似數(shù),從左邊第一個(gè)不是0的數(shù)字起,到精確到的數(shù)位為止的數(shù)字。
10、游戲雙方公平:雙方獲勝的可能性相同。
11、算數(shù)平均數(shù):簡(jiǎn)稱“平均數(shù)”,最常用,受極端值得影響較大;加權(quán)平均數(shù)12、中位數(shù):數(shù)據(jù)按大小排列,處于中間位置的數(shù),計(jì)算簡(jiǎn)單,受極端值得影響較小。
13、眾數(shù):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),受極端值得影響較小,跟其他數(shù)據(jù)關(guān)系不大。
14、平均數(shù)、眾數(shù)、中位數(shù)都是數(shù)據(jù)的代表,刻畫(huà)了一組數(shù)據(jù)的“平均水平”。
15、普查:為了一定目的對(duì)考察對(duì)象進(jìn)行全面調(diào)查;考察對(duì)象全體叫總體,每個(gè)考察對(duì)象叫個(gè)體。
16、抽樣調(diào)查:從總體中抽取部分個(gè)體進(jìn)行調(diào)查;從總體中抽出的一部分個(gè)體叫樣本(有代表性)。
17、隨機(jī)調(diào)查:按機(jī)會(huì)均等的原則進(jìn)行調(diào)查,總體中每個(gè)個(gè)體被調(diào)查的概率相同。
18、頻數(shù):每次對(duì)象出現(xiàn)的次數(shù)。
19、頻率:每次對(duì)象出現(xiàn)的次數(shù)與總次數(shù)的比值。
20、級(jí)差:一組數(shù)據(jù)中數(shù)據(jù)與最小數(shù)據(jù)的差,刻畫(huà)數(shù)據(jù)的離散程度。
21、方差:各個(gè)數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù),刻畫(huà)數(shù)據(jù)的離散程度。
21、標(biāo)準(zhǔn)方差:方差的算數(shù)平方根刻畫(huà)數(shù)據(jù)的離散程度。
23、一組數(shù)據(jù)的級(jí)差、方差、標(biāo)準(zhǔn)方差越小,這組數(shù)據(jù)就越穩(wěn)定。
24、利用樹(shù)狀圖或表格方便求出某事件發(fā)生的概率。
25、兩個(gè)對(duì)比圖像中,坐標(biāo)軸上同一單位長(zhǎng)度表示的意義一致,縱坐標(biāo)從0開(kāi)始畫(huà)。
2.高三數(shù)學(xué)必修二復(fù)習(xí)知識(shí)點(diǎn) 篇二
平方關(guān)系:
sin^2α+cos^2α=1
1+tan^2α=sec^2α
1+cot^2α=csc^2α
積的關(guān)系:
sinα=tanα×cosα
cosα=cotα×sinα
tanα=sinα×secα
cotα=cosα×cscα
secα=tanα×cscα
cscα=secα×cotα
倒數(shù)關(guān)系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
商的關(guān)系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
3.高三數(shù)學(xué)必修二復(fù)習(xí)知識(shí)點(diǎn) 篇三
空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)
俯視圖(從上向下)
注:正視圖反映了物體的高度和長(zhǎng)度;俯視圖反映了物體的長(zhǎng)度和寬度;側(cè)視圖反映了物體的高度和寬度.
空間幾何體的直觀圖——斜二測(cè)畫(huà)法
斜二測(cè)畫(huà)法特點(diǎn):原來(lái)與x軸平行的線段仍然與x平行且長(zhǎng)度不變;
原來(lái)與y軸平行的線段仍然與y平行,長(zhǎng)度為原來(lái)的一半.
柱體、錐體、臺(tái)體的表面積與體積
(1)幾何體的表面積為幾何體各個(gè)面的面積的和.
(2)特殊幾何體表面積公式(c為底面周長(zhǎng),h為高,為斜高,l為母線)
(3)柱體、錐體、臺(tái)體的體積公式
4.高三數(shù)學(xué)必修二復(fù)習(xí)知識(shí)點(diǎn) 篇四
數(shù)列
(1)數(shù)列的概念和簡(jiǎn)單表示法
、倭私鈹(shù)列的概念和幾種簡(jiǎn)單的表示方法(列表、圖象、通項(xiàng)公式).
②了解數(shù)列是自變量為正整數(shù)的一類函數(shù).
(2)等差數(shù)列、等比數(shù)列
、倮斫獾炔顢(shù)列、等比數(shù)列的概念.
②掌握等差數(shù)列、等比數(shù)列的通項(xiàng)公式與前項(xiàng)和公式.
、勰茉诰唧w的問(wèn)題情境中,識(shí)別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識(shí)解決相應(yīng)的問(wèn)題.
、芰私獾炔顢(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系.
5.高三數(shù)學(xué)必修二復(fù)習(xí)知識(shí)點(diǎn) 篇五
直線與方程
。1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
。2)直線的斜率
、俣x:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即ktan。斜率反映直線與軸的傾斜程度。當(dāng)0,90時(shí),k0;當(dāng)90y2y1x2x1,180時(shí),k0;當(dāng)90時(shí),k不存在。
、谶^(guò)兩點(diǎn)的直線的斜率公式:k(x1x2)
注意下面四點(diǎn):
(1)當(dāng)x1x2時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無(wú)關(guān);
(3)以后求斜率可不通過(guò)傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;
(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。
6.高三數(shù)學(xué)必修二復(fù)習(xí)知識(shí)點(diǎn) 篇六
導(dǎo)數(shù)是微積分中的重要基礎(chǔ)概念。當(dāng)函數(shù)=f(x)的自變量x在一點(diǎn)x0上產(chǎn)生一個(gè)增量Δx時(shí),函數(shù)輸出值的增量Δ與自變量增量Δx的比值在Δx趨于0時(shí)的極限a如果存在,a即為在x0處的導(dǎo)數(shù),記作f'(x0)或df(x0)/dx。
導(dǎo)數(shù)是函數(shù)的局部性質(zhì)。一個(gè)函數(shù)在某一點(diǎn)的導(dǎo)數(shù)描述了這個(gè)函數(shù)在這一點(diǎn)附近的變化率。如果函數(shù)的自變量和取值都是實(shí)數(shù)的話,函數(shù)在某一點(diǎn)的導(dǎo)數(shù)就是該函數(shù)所代表的曲線在這一點(diǎn)上的切線斜率。導(dǎo)數(shù)的本質(zhì)是通過(guò)極限的概念對(duì)函數(shù)進(jìn)行局部的線性逼近。例如在運(yùn)動(dòng)學(xué)中,物體的位移對(duì)于時(shí)間的導(dǎo)數(shù)就是物體的瞬時(shí)速度。
不是所有的函數(shù)都有導(dǎo)數(shù),一個(gè)函數(shù)也不一定在所有的點(diǎn)上都有導(dǎo)數(shù)。若某函數(shù)在某一點(diǎn)導(dǎo)數(shù)存在,則稱其在這一點(diǎn)可導(dǎo),否則稱為不可導(dǎo)。然而,可導(dǎo)的函數(shù)一定連續(xù);不連續(xù)的函數(shù)一定不可導(dǎo)。
對(duì)于可導(dǎo)的函數(shù)f(x),xf'(x)也是一個(gè)函數(shù),稱作f(x)的導(dǎo)函數(shù)。尋找已知的函數(shù)在某點(diǎn)的導(dǎo)數(shù)或其導(dǎo)函數(shù)的過(guò)程稱為求導(dǎo)。實(shí)質(zhì)上,求導(dǎo)就是一個(gè)求極限的過(guò)程,導(dǎo)數(shù)的四則運(yùn)算法則也于極限的四則運(yùn)算法則。反之,已知導(dǎo)函數(shù)也可以倒過(guò)來(lái)求原來(lái)的函數(shù),即不定積分。微積分基本定理說(shuō)明了求原函數(shù)與積分是等價(jià)的。求導(dǎo)和積分是一對(duì)互逆的操作,它們都是微積分學(xué)中最為基礎(chǔ)的概念。
設(shè)函數(shù)=f(x)在點(diǎn)x0的某個(gè)鄰域內(nèi)有定義,當(dāng)自變量x在x0處有增量Δx,(x0+Δx)也在該鄰域內(nèi)時(shí),相應(yīng)地函數(shù)取得增量Δ=f(x0+Δx)-f(x0);如果Δ與Δx之比當(dāng)Δx→0時(shí)極限存在,則稱函數(shù)=f(x)在點(diǎn)x0處可導(dǎo),并稱這個(gè)極限為函數(shù)=f(x)在點(diǎn)x0處的導(dǎo)數(shù)記為f'(x0),也記作'│x=x0或d/dx│x=x0