1.高二數(shù)學(xué)上學(xué)期知識點(diǎn)歸納 篇一
總體和樣本
、僭诮y(tǒng)計學(xué)中,把研究對象的全體叫做總體。
②把每個研究對象叫做個體。
、郯芽傮w中個體的總數(shù)叫做總體容量。
、転榱搜芯靠傮w的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:x1,x2,....,_研究,我們稱它為樣本.其中個體的個數(shù)稱為樣本容量。
簡單隨機(jī)抽樣
也叫純隨機(jī)抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨。
機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨(dú)立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ),高三。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。
簡單隨機(jī)抽樣常用的方法
、俪楹灧
、陔S機(jī)數(shù)表法
③計算機(jī)模擬法
、苁褂媒y(tǒng)計軟件直接抽取。
在簡單隨機(jī)抽樣的樣本容量設(shè)計中,主要考慮:
、倏傮w變異情況;
②允許誤差范圍;
、鄹怕时WC程度。
抽簽法
、俳o調(diào)查對象群體中的每一個對象編號;
②準(zhǔn)備抽簽的工具,實施抽簽;
③對樣本中的每一個個體進(jìn)行測量或調(diào)查。
2.高二數(shù)學(xué)上學(xué)期知識點(diǎn)歸納 篇二
函數(shù)的奇偶性
(1)若f(x)是偶函數(shù),那么f(x)=f(-x);
(2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));
(3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性;
(5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;
3.高二數(shù)學(xué)上學(xué)期知識點(diǎn)歸納 篇三
立體幾何初步
(1)棱柱:
定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點(diǎn)字母,如五棱柱或用對角線的端點(diǎn)字母,如五棱柱
幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
定義:有一個面是多邊形,其余各面都是有一個公共頂點(diǎn)的三角形,由這些面所圍成的幾何體
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等
表示:用各頂點(diǎn)字母,如五棱錐
幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。
(3)棱臺:
定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺、五棱臺等
表示:用各頂點(diǎn)字母,如五棱臺
幾何特征:
、偕舷碌酌媸窍嗨频钠叫卸噙呅
、趥(cè)面是梯形
③側(cè)棱交于原棱錐的頂點(diǎn)
(4)圓柱:
定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體
幾何特征:
、俚酌媸侨鹊膱A;
、谀妇與軸平行;
、圯S與底面圓的半徑垂直;
、軅(cè)面展開圖是一個矩形。
(5)圓錐:
定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體
幾何特征:
、俚酌媸且粋圓;
②母線交于圓錐的頂點(diǎn);
、蹅(cè)面展開圖是一個扇形。
(6)圓臺:
定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特征:
、偕舷碌酌媸莾蓚圓;
、趥(cè)面母線交于原圓錐的頂點(diǎn);
、蹅(cè)面展開圖是一個弓形。
(7)球體:
定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
幾何特征:
、偾虻慕孛媸菆A;
、谇蛎嫔先我庖稽c(diǎn)到球心的距離等于半徑。
4.高二數(shù)學(xué)上學(xué)期知識點(diǎn)歸納 篇四
(1)總體和樣本
①在統(tǒng)計學(xué)中,把研究對象的全體叫做總體.
、诎衙總研究對象叫做個體.
③把總體中個體的總數(shù)叫做總體容量.
、転榱搜芯靠傮w的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:x1,x2,....,研究,我們稱它為樣本.其中個體的個數(shù)稱為樣本容量.
(2)簡單隨機(jī)抽樣,也叫純隨機(jī)抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨
機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨(dú)立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。
(3)簡單隨機(jī)抽樣常用的方法:
、俪楹灧
②隨機(jī)數(shù)表法
、塾嬎銠C(jī)模擬法
在簡單隨機(jī)抽樣的樣本容量設(shè)計中,主要考慮:
、倏傮w變異情況;
②允許誤差范圍;
、鄹怕时WC程度。
(4)抽簽法:
、俳o調(diào)查對象群體中的每一個對象編號;
、跍(zhǔn)備抽簽的工具,實施抽簽;
、蹖颖局械拿恳粋個體進(jìn)行測量或調(diào)查
5.高二數(shù)學(xué)上學(xué)期知識點(diǎn)歸納 篇五
空間中的平行問題
(1)直線與平面平行的判定及其性質(zhì)
線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。
線線平行線面平行
線面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。線面平行線線平行。
(2)平面與平面平行的.判定及其性質(zhì)
兩個平面平行的判定定理
(1)如果一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行。(線面平行→面面平行)
(2)如果在兩個平面內(nèi),各有兩組相交直線對應(yīng)平行,那么這兩個平面平行。(線線平行→面面平行)
(3)垂直于同一條直線的兩個平面平行。
兩個平面平行的性質(zhì)定理
(1)如果兩個平面平行,那么某一個平面內(nèi)的直線與另一個平面平行。(面面平行→線面平行)
(2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行。(面面平行→線線平行)