国产18禁黄网站免费观看,99爱在线精品免费观看,粉嫩metart人体欣赏,99久久99精品久久久久久,6080亚洲人久久精品

高三數(shù)學(xué)知識(shí)梳理(20篇)

時(shí)間:2024-12-05 17:07:00   來源:無憂考網(wǎng)     [字體: ]
【#高三# #高三數(shù)學(xué)知識(shí)梳理(20篇)#】踏入高三這一關(guān)鍵戰(zhàn)場,數(shù)學(xué)這座巍峨高山橫亙眼前,別慌!©無憂考網(wǎng)為大家精心整理了20篇高三數(shù)學(xué)知識(shí)點(diǎn),每一篇皆條理清晰、深入淺出,搭配經(jīng)典例題,助你吃透知識(shí)點(diǎn),從夯實(shí)根基到攻克難題,穩(wěn)步攀向數(shù)學(xué)高分峰巔,開啟逆襲征程!

1.高三數(shù)學(xué)知識(shí)梳理 篇一

 直線與平面垂直

  定義:直線與平面內(nèi)任意一條直線都垂直

  判定:如果一條直線與一個(gè)平面內(nèi)的兩條相交的直線都垂直,則該直線與此平面垂直

  性質(zhì):垂直于同一直線的兩平面平行

  推論:如果在兩條平行直線中,有一條垂直于一個(gè)平面,那么另一條也垂直于這個(gè)平面

  直線和平面所成的角:(0,90)度,平面內(nèi)的一條斜線和它在平面內(nèi)的射影說成的銳角,特別規(guī)定垂直90度,在平面內(nèi)或者平行0度

2.高三數(shù)學(xué)知識(shí)梳理 篇二

  平面與平面平行

  定義:兩個(gè)平面沒有公共點(diǎn)

  判定:一個(gè)平面內(nèi)有兩條相交直線平行于另一個(gè)平面,則這兩個(gè)平面平行

  性質(zhì):兩個(gè)平面平行,則其中一個(gè)平面內(nèi)的直線平行于另一個(gè)平面;如果兩個(gè)平行平面同時(shí)與第三個(gè)平面相交,那么它們的交線平行。

3.高三數(shù)學(xué)知識(shí)梳理 篇三

  異面直線:

  平面外一點(diǎn)A與平面一點(diǎn)B的連線和平面內(nèi)不經(jīng)過點(diǎn)B的直線是異面直線(判定);

  所成的角范圍(0,90)度(平移法,作平行線相交得到夾角或其補(bǔ)角);

  兩條直線不是異面直線,則兩條直線平行或相交(反證);

  異面直線不同在任何一個(gè)平面內(nèi)。

  求異面直線所成的角:平移法,把異面問題轉(zhuǎn)化為相交直線的夾角

4.高三數(shù)學(xué)知識(shí)梳理 篇四

  空間點(diǎn)、直線、平面之間的位置關(guān)系:

  直線與直線—平行、相交、異面;

  直線與平面—平行、相交、直線屬于該平面(線在面內(nèi),最易忽視);

  平面與平面—平行、相交。

5.高三數(shù)學(xué)知識(shí)梳理 篇五

  平面的基本性質(zhì):

  公理1如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在這個(gè)平面內(nèi);

  公理2過不在一條直線上的三點(diǎn),有且只有一個(gè)平面;

  公理3如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線。

6.高三數(shù)學(xué)知識(shí)梳理 篇六

  求動(dòng)點(diǎn)的軌跡方程的基本方法:

  直接法、定義法、相關(guān)點(diǎn)法、參數(shù)法、交軌法等。

  1、直接法:

  如果動(dòng)點(diǎn)運(yùn)動(dòng)的條件就是一些幾何量的等量關(guān)系,這些條件簡單明確,不需要特殊的技巧,易于表述成含x,y的等式,就得到軌跡方程,這種方法稱之為直接法;

  用直接法求動(dòng)點(diǎn)軌跡一般有建系,設(shè)點(diǎn),列式,化簡,證明五個(gè)步驟,最后的證明可以省略,但要注意“挖”與“補(bǔ)”。求軌跡方程一般只要求出方程即可,求軌跡卻不僅要求出方程而且要說明軌跡是什么。

  2、定義法:

  利用所學(xué)過的圓的定義、橢圓的定義、雙曲線的定義、拋物線的定義直接寫出所求的動(dòng)點(diǎn)的軌跡方程,高考生物,這種方法叫做定義法.這種方法要求題設(shè)中有定點(diǎn)與定直線及兩定點(diǎn)距離之和或差為定值的條件,或利用平面幾何知識(shí)分析得出這些條件。定義法的關(guān)鍵是條件的轉(zhuǎn)化??轉(zhuǎn)化成某一基本軌跡的定義條件;

  3、相關(guān)點(diǎn)法:

  動(dòng)點(diǎn)所滿足的條件不易表述或求出,但形成軌跡的動(dòng)點(diǎn)P(x,y)卻隨另一動(dòng)點(diǎn)Q(x′,y′)的運(yùn)動(dòng)而有規(guī)律的運(yùn)動(dòng),且動(dòng)點(diǎn)Q的軌跡為給定或容易求得,則可先將x′,y′表示為x,y的式子,再代入Q的軌跡方程,然而整理得P的軌跡方程,代入法也稱相關(guān)點(diǎn)法。一般地:定比分點(diǎn)問題,對稱問題或能轉(zhuǎn)化為這兩類的軌跡問題,都可用相關(guān)點(diǎn)法。

  4、參數(shù)法:

  求軌跡方程有時(shí)很難直接找到動(dòng)點(diǎn)的橫坐標(biāo)、縱坐標(biāo)之間的關(guān)系,則可借助中間變量(參數(shù)),使x,y之間建立起聯(lián)系,然而再從所求式子中消去參數(shù),得出動(dòng)點(diǎn)的軌跡方程。用什么變量為參數(shù),要看動(dòng)點(diǎn)隨什么量的變化而變化,常見的參數(shù)有:斜率、截距、定比、角、點(diǎn)的坐標(biāo)等。要特別注意消參前后保持范圍的等價(jià)性。多參問題中,根據(jù)方程的觀點(diǎn),引入n個(gè)參數(shù),需建立n+1個(gè)方程,才能消參(特殊情況下,能整體處理時(shí),方程個(gè)數(shù)可減少)。

  5、交軌法:

  求兩動(dòng)曲線交點(diǎn)軌跡時(shí),可由方程直接消去參數(shù),例如求兩動(dòng)直線的交點(diǎn)時(shí)常用此法,也可以引入?yún)?shù)來建立這些動(dòng)曲線的聯(lián)系,然而消去參數(shù)得到軌跡方程?梢哉f是參數(shù)法的一種變種。用交軌法求交點(diǎn)的軌跡方程時(shí),不一定非要求出交點(diǎn)坐標(biāo),只要能消去參數(shù),得到交點(diǎn)的兩個(gè)坐標(biāo)間的關(guān)系即可。交軌法實(shí)際上是參數(shù)法中的一種特殊情況。

7.高三數(shù)學(xué)知識(shí)梳理 篇七

  1.全稱命題真假的判斷方法

  (1)要判斷一個(gè)全稱命題是真命題,必須對限定的集合M中的每一個(gè)元素x,證明p(x)成立;

  (2)要判斷一個(gè)全稱命題是假命題,只要能舉出集合M中的一個(gè)特殊值x=x0,使p(x0)不成立即可.

  2.特稱命題真假的判斷方法

  要判斷一個(gè)特稱命題是真命題,只要在限定的集合M中,找到一個(gè)x=x0,使p(x0)成立即可,否則這一特稱命題就是假命題.

8.高三數(shù)學(xué)知識(shí)梳理 篇八

  1.邏輯聯(lián)結(jié)詞與集合的關(guān)系

  或、且、非三個(gè)邏輯聯(lián)結(jié)詞,對應(yīng)著集合運(yùn)算中的并、交、補(bǔ),因此,常常借助集合的并、交、補(bǔ)的意義來解答由或、且、非三個(gè)聯(lián)結(jié)詞構(gòu)成的命題問題.

  2.正確區(qū)別命題的否定與否命題

  否命題是對原命題若p,則q的條件和結(jié)論分別加以否定而得到的命題,它既否定其條件,又否定其結(jié)論;命題的否定即非p,只是否定命題p的結(jié)論.命題的否定與原命題的真假總是對立的,即兩者中有且只有一個(gè)為真,而原命題與否命題的真假無必然聯(lián)系.

9.高三數(shù)學(xué)知識(shí)梳理 篇九

  1.全稱量詞與全稱命題

  (1)短語所有的任意一個(gè)在邏輯中通常叫做全稱量詞,并用符號(hào)表示.

  (2)含有全稱量詞的命題,叫做全稱命題.

  (3)全稱命題對M中任意一個(gè)x,有p(x)成立可用符號(hào)簡記為xM,p(x),讀作對任意x屬于M,有p(x)成立.

  2.存在量詞與特稱命題

  (1)短語存在一個(gè)至少有一個(gè)在邏輯中通常叫做存在量詞,并用符號(hào)表示.

  (2)含有存在量詞的命題,叫做特稱命題.

  (3)特稱命題存在M中的一個(gè)x0,使p(x0)成立可用符號(hào)簡記為x0M,P(x0),讀作存在M中的元素x0,使p(x0)成立.

10.高三數(shù)學(xué)知識(shí)梳理 篇十

  簡單的邏輯聯(lián)結(jié)詞

  1.用聯(lián)結(jié)詞且聯(lián)結(jié)命題p和命題q,記作pq,讀作p且q.

  2.用聯(lián)結(jié)詞或聯(lián)結(jié)命題p和命題q,記作pq,讀作p或q.

  3.對一個(gè)命題p全盤否定,就得到一個(gè)新命題,記作綈p,讀作非p或p的否定.

  4.命題pq,pq,綈p的真假判斷:

  pq中p、q有一假為假,pq有一真為真,p與非p必定是一真一假.

11.高三數(shù)學(xué)知識(shí)梳理 篇十一

  對數(shù)函數(shù)性質(zhì)

  定義域求解:對數(shù)函數(shù)y=logax的定義域是{x丨x>0},但如果遇到對數(shù)型復(fù)合函數(shù)的定義域的求解,除了要注意大于0以外,還應(yīng)注意底數(shù)大于0且不等于1,如求函數(shù)y=logx(2x-1)的定義域,需同時(shí)滿足x>0且x≠1和2x-1>0,得到x>1/2且x≠1,即其定義域?yàn)閧x丨x>1/2且x≠1}

  值域:實(shí)數(shù)集R,顯然對數(shù)函數(shù)無/界。

  定點(diǎn):函數(shù)圖像恒過定點(diǎn)(1,0)。

  單調(diào)性:a>1時(shí),在定義域上為單調(diào)增函數(shù);

  奇偶性:非奇非偶函數(shù)

  周期性:不是周期函數(shù)

  對稱性:無

  最值:無

  零點(diǎn):x=1

  注意:負(fù)數(shù)和0沒有對數(shù)。

12.高三數(shù)學(xué)知識(shí)梳理 篇十二

  判斷函數(shù)值域的方法

  1、配方法:利用二次函數(shù)的配方法求值域,需注意自變量的取值范圍。

  2、換元法:常用代數(shù)或三角代換法,把所給函數(shù)代換成值域容易確定的另一函數(shù),從而得到原函數(shù)值域,如y=ax+b+_√cx-d(a,b,c,d均為常數(shù)且ac不等于0)的函數(shù)常用此法求解。

  3、判別式法:若函數(shù)為分式結(jié)構(gòu),且分母中含有未知數(shù)x?,則常用此法。通常去掉分母轉(zhuǎn)化為一元二次方程,再由判別式△≥0,確定y的'范圍,即原函數(shù)的值域

  4、不等式法:利用a+b≥2√ab(其中a,b∈R+)求函數(shù)值域時(shí),要時(shí)刻注意不等式成立的條件,即“一正,二定,三相等”。

  5、反函數(shù)法:若原函數(shù)的值域不易直接求解,則可以考慮其反函數(shù)的定義域,根據(jù)互為反函數(shù)的兩個(gè)函數(shù)定義域與值域互換的特點(diǎn),確定原函數(shù)的值域,如y=cx+d/ax+b(a≠0)型函數(shù)的值域,可采用反函數(shù)法,也可用分離常數(shù)法。

  6、單調(diào)性法:首先確定函數(shù)的定義域,然后在根據(jù)其單調(diào)性求函數(shù)值域,常用到函數(shù)y=x+p/x(p>0)的單調(diào)性:增區(qū)間為(-∞,-√p)的左開右閉區(qū)間和(√p,+∞)的左閉右開區(qū)間,減區(qū)間為(-√p,0)和(0,√p)

  7、數(shù)形結(jié)合法:分析函數(shù)解析式表達(dá)的集合意義,根據(jù)其圖像特點(diǎn)確定值域。

13.高三數(shù)學(xué)知識(shí)梳理 篇十三

  二次函數(shù)的零點(diǎn):

  1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).

  2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).

  3)△<0,方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn),二次函數(shù)無零點(diǎn).

14.高三數(shù)學(xué)知識(shí)梳理 篇十四

  1.等差數(shù)列的定義

  如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d表示。

  2.等差數(shù)列的通項(xiàng)公式

  若等差數(shù)列{an}的首項(xiàng)是a1,公差是d,則其通項(xiàng)公式為an=a1+(n-1)d。

15.高三數(shù)學(xué)知識(shí)梳理 篇十五

  簡單隨機(jī)抽樣

  也叫純隨機(jī)抽樣。就是從總體中不加任何分組、劃類、排隊(duì)等,完全隨機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的每個(gè)單位完全獨(dú)立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時(shí),才采用這種方法。

16.高三數(shù)學(xué)知識(shí)梳理 篇十六

  復(fù)數(shù)相等特別提醒:

  一般地,兩個(gè)復(fù)數(shù)只能說相等或不相等,而不能比較大小。如果兩個(gè)復(fù)數(shù)都是實(shí)數(shù),就可以比較大小,也只有當(dāng)兩個(gè)復(fù)數(shù)全是實(shí)數(shù)時(shí)才能比較大小。

  解復(fù)數(shù)相等問題的方法步驟:

  (1)把給的復(fù)數(shù)化成復(fù)數(shù)的標(biāo)準(zhǔn)形式;

  (2)根據(jù)復(fù)數(shù)相等的充要條件解之。

17.高三數(shù)學(xué)知識(shí)梳理 篇十七

  數(shù)列的分類

  (1)根據(jù)數(shù)列的項(xiàng)數(shù)多少可以對數(shù)列進(jìn)行分類,分為有窮數(shù)列和無窮數(shù)列.在寫數(shù)列時(shí),對于有窮數(shù)列,要把末項(xiàng)寫出,例如數(shù)列1,3,5,7,9,…,2n-1表示有窮數(shù)列,如果把數(shù)列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數(shù)列.

  (2)按照項(xiàng)與項(xiàng)之間的大小關(guān)系或數(shù)列的增減性可以分為以下幾類:遞增數(shù)列、遞減數(shù)列、擺動(dòng)數(shù)列、常數(shù)列.

18.高三數(shù)學(xué)知識(shí)梳理 篇十八

  數(shù)列的定義

  按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個(gè)數(shù)都叫做數(shù)列的項(xiàng).

  (1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列.

  (2)在數(shù)列的定義中并沒有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個(gè)相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構(gòu)成數(shù)列:-1,1,-1,1,….

  (4)數(shù)列的項(xiàng)與它的項(xiàng)數(shù)是不同的,數(shù)列的項(xiàng)是指這個(gè)數(shù)列中的某一個(gè)確定的數(shù),是一個(gè)函數(shù)值,也就是相當(dāng)于f(n),而項(xiàng)數(shù)是指這個(gè)數(shù)在數(shù)列中的位置序號(hào),它是自變量的值,相當(dāng)于f(n)中的n.

  (5)次序?qū)τ跀?shù)列來講是十分重要的,有幾個(gè)相同的數(shù),由于它們的排列次序不同,構(gòu)成的數(shù)列就不是一個(gè)相同的數(shù)列,顯然數(shù)列與數(shù)集有本質(zhì)的區(qū)別.如:2,3,4,5,6這5個(gè)數(shù)按不同的次序排列時(shí),就會(huì)得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個(gè)集合.

19.高三數(shù)學(xué)知識(shí)梳理 篇十九

  分?jǐn)?shù)指數(shù)冪

  正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:

  0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義

  指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪

20.高三數(shù)學(xué)知識(shí)梳理 篇二十

  向量的三角形不等式

  (1)∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;

  ①當(dāng)且僅當(dāng)a、b反向時(shí),左邊取等號(hào);

 、诋(dāng)且僅當(dāng)a、b同向時(shí),右邊取等號(hào)。

  (2)∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。

  ①當(dāng)且僅當(dāng)a、b同向時(shí),左邊取等號(hào);

 、诋(dāng)且僅當(dāng)a、b反向時(shí),右邊取等號(hào)。