国产18禁黄网站免费观看,99爱在线精品免费观看,粉嫩metart人体欣赏,99久久99精品久久久久久,6080亚洲人久久精品

高三數(shù)學備考復數(shù)的有關概念教案

時間:2013-10-12 14:23:00   來源:無憂考網(wǎng)     [字體: ]
以下是©憂考網(wǎng)為大家整理的關于《高三數(shù)學備考復數(shù)的有關概念教案》的文章,供大家學習參考!

教學目標

(1)掌握,如虛數(shù)、純虛數(shù)、復數(shù)的實部與虛部、兩復數(shù)相等、復平面、實軸、虛軸、共軛復數(shù)、共軛虛數(shù)的概念。
(2)正確對復數(shù)進行分類,掌握數(shù)集之間的從屬關系;
(3)理解復數(shù)的幾何意義,初步掌握復數(shù)集C和復平面內(nèi)所有的點所成的集合之間的一一對應關系。
(4)培養(yǎng)學生數(shù)形結(jié)合的數(shù)學思想,訓練學生條理的邏輯思維能力.

教學建議

(一)教材分析

1、知識結(jié)構

本節(jié)首先介紹了,然后指出復數(shù)相等的充要條件,接著介紹了有關復數(shù)的幾何表示,后指出了有關共軛復數(shù)的概念.

2、重點、難點分析

(1)正確復數(shù)的實部與虛部

對于復數(shù) ,實部是 ,虛部是 .注意在說復數(shù) 時,一定有 ,否則,不能說實部是 ,虛部是 ,復數(shù)的實部和虛部都是實數(shù)。

說明:對于復數(shù)的定義,特別要抓住 這一標準形式以及 是實數(shù)這一概念,這對于解有關復數(shù)的問題將有很大的幫助。

(2)正確地對復數(shù)進行分類,弄清數(shù)集之間的關系

分類要求不重復、不遺漏,同一級分類標準要統(tǒng)一。根據(jù)上述原則,復數(shù)集的分類如下:

注意分清復數(shù)分類中的界限:

①設 ,則 為實數(shù)

② 為虛數(shù)

③ 且 。

④ 為純虛數(shù) 且

(3)不能亂用復數(shù)相等的條件解題.用復數(shù)相等的條件要注意:

①化為復數(shù)的標準形式

②實部、虛部中的字母為實數(shù),即

(4)在講復數(shù)集與復平面內(nèi)所有點所成的集合一一對應時,要注意:

①任何一個復數(shù) 都可以由一個有序?qū)崝?shù)對( )確定.這就是說,復數(shù)的實質(zhì)是有序?qū)崝?shù)對.一些書上就是把實數(shù)對( )叫做復數(shù)的.

②復數(shù) 用復平面內(nèi)的點Z( )表示.復平面內(nèi)的點Z的坐標是( ),而不是( ),也就是說,復平面內(nèi)的縱坐標軸上的單位長度是1,而不是 .由于 =0+1· ,所以用復平面內(nèi)的點(0,1)表示 時,這點與原點的距離是1,等于縱軸上的單位長度.這就是說,當我們把縱軸上的點(0,1)標上虛數(shù) 時,不能以為這一點到原點的距離就是虛數(shù)單位 ,或者 就是縱軸的單位長度.

③當 時,對任何 , 是純虛數(shù),所以縱軸上的點( )( )都是表示純虛數(shù).但當 時, 是實數(shù).所以,縱軸去掉原點后稱為虛軸.

由此可見,復平面(也叫高斯平面)與一般的坐標平面(也叫笛卡兒平面)的區(qū)別就是復平面的虛軸不包括原點,而一般坐標平面的原點是橫、縱坐標軸的公共點.

④復數(shù)z=a+bi中的z,書寫時小寫,復平面內(nèi)點Z(a,b)中的Z,書寫時大寫.要學生注意.

(5)關于共軛復數(shù)的概念

設 ,則 ,即 與 的實部相等,虛部互為相反數(shù)(不能認為 與 或 是共軛復數(shù)).

教師可以提一下當 時的特殊情況,即實軸上的點關于實軸本身對稱,例如:5和-5也是互為共軛復數(shù).當 時, 與 互為共軛虛數(shù).可見,共軛虛數(shù)是共軛復數(shù)的特殊情行.

(6)復數(shù)能否比較大小

教材后指出:“兩個復數(shù),如果不全是實數(shù),就不能比較它們的大小”,要注意:

①根據(jù)兩個復數(shù)相等地定義,可知在 兩式中,只要有一個不成立,那么 .兩個復數(shù),如果不全是實數(shù),只有相等與不等關系,而不能比較它們的大小.

②命題中的“不能比較它們的大小”的確切含義是指:“不論怎樣定義兩個復數(shù)間的一個關系‘<’,都不能使這關系同時滿足實數(shù)集中大小關系地四條性質(zhì)”:

(i)對于任意兩個實數(shù)a, b來說,a<b, a=b, b<a這三種情形有且僅有一種成立;

(ii)如果a<b,b<c,那么a<c;

(iii)如果a<b,那么a+c<b+c;

(iv)如果a<b,c>0,那么ac<bc.(不必向?qū)W生講解)

(二)教法建議

1.要注意知識的連續(xù)性:復數(shù) 是二維數(shù),其幾何意義是一個點 ,因而注意與平面解析幾何的聯(lián)系.

2.注意數(shù)形結(jié)合的數(shù)形思想:由于復數(shù)集與復平面上的點的集合建立了一一對應關系,所以用“形”來解決“數(shù)”就成為可能,在本節(jié)要注意復數(shù)的幾何意義的講解,培養(yǎng)學生數(shù)形結(jié)合的數(shù)學思想.

3.注意分層次的教學:教材中后對于“兩個復數(shù),如果不全是實數(shù)就不能本節(jié)它們的大小”沒有證明,如果有學生提出來了,在課堂上不要給全體學生證明,可以在課下給學有余力的學生進行解答.

教學目標

1.了解復數(shù)的實部,虛部;

2.掌握復數(shù)相等的意義;

3.了解并掌握共軛復數(shù),及在復平面內(nèi)表示復數(shù).

教學重點

復數(shù)的概念,復數(shù)相等的充要條件.

教學難點

用復平面內(nèi)的點表示復數(shù)M.

教學用具:直尺

課時安排:1課時

教學過程:

一、復習提問:

1.復數(shù)的定義。

2.虛數(shù)單位。

二、講授新課

1.復數(shù)的實部和虛部:

復數(shù) 中的a與b分別叫做復數(shù)的實部和虛部。

2.復數(shù)相等

如果兩個復數(shù) 與 的實部與虛部分別相等,就說這兩個復數(shù)相等。

即: 的充要條件是 且 。

例如: 的充要條件是 且 。

例1: 已知 其中 ,求x與y.

解:根據(jù)復數(shù)相等的意義,得方程組:

例2:m是什么實數(shù)時,復數(shù) ,

(1) 是實數(shù),(2)是虛數(shù),(3)是純虛數(shù).

解:

(1) ∵ 時,z是實數(shù),

∴ ,或 .

(2) ∵ 時,z是虛數(shù),

∴ ,且

(3) ∵ 且 時,

z是純虛數(shù). ∴

3.用復平面(高斯平面)內(nèi)的點表示復數(shù)

復平面的定義

建立了直角坐標系表示復數(shù)的平面,叫做復平面.

復數(shù) 可用點 來表示.(如圖)其中x軸叫實軸,y軸 除去原點的部分叫虛軸,表示實數(shù)的點都在實軸上,表示純虛數(shù)的點都在虛軸上。原點只在實軸x上,不在虛軸上.

4.復數(shù)的幾何意義:

復數(shù)集c和復平面所有的點的集合是一一對應的.

5.共軛復數(shù)

(1)當兩個復數(shù)實部相等,虛部互為相反數(shù)時,這兩個復數(shù)叫做互為共軛復數(shù)。(虛部不為零也叫做互為共軛復數(shù))

(2)復數(shù)z的共軛復數(shù)用 表示.若 ,則: ;

(3)實數(shù)a的共軛復數(shù)仍是a本身,純虛數(shù)的共軛復數(shù)是它的相反數(shù).

(4)復平面內(nèi)表示兩個共軛復數(shù)的點z與 關于實軸對稱.

三、練習 1,2,3,4.

四、小結(jié):

1.在理解時應注意:

(1)明確什么是復數(shù)的實部與虛部;

(2)弄清實數(shù)、虛數(shù)、純虛數(shù)分別對實部與虛部的要求;

(3)弄清復平面與復數(shù)的幾何意義;

(4)兩個復數(shù)不全是實數(shù)就不能比較大小。

2.復數(shù)集與復平面上的點注意事項:

(1)復數(shù) 中的z,書寫時小寫,復平面內(nèi)點Z(a,b)中的Z,書寫時大寫。

(2)復平面內(nèi)的點Z的坐標是(a,b),而不是(a,bi),也就是說,復平面內(nèi)的縱坐標軸上的單位長度是1,而不是i。

(3)表示實數(shù)的點都在實軸上,表示純虛數(shù)的點都在虛軸上。

(4)復數(shù)集C和復平面內(nèi)所有的點組成的集合一一對應:


五、作業(yè) 1,2,3,4,