国产18禁黄网站免费观看,99爱在线精品免费观看,粉嫩metart人体欣赏,99久久99精品久久久久久,6080亚洲人久久精品

高二數學必修五知識點:數列的概念與簡單表示法

時間:2013-11-26 13:18:00   來源:無憂考網     [字體: ]

以下是©無憂考網為大家整理的關于《高二數學必修五知識點:數列的概念與簡單表示法》,供大家學習參考!


1.數列的定義

按一定次序排列的一列數叫做數列,數列中的每一個數都叫做數列的項.

(1)從數列定義可以看出,數列的數是按一定次序排列的,如果組成數列的數相同而排列次序不同,那么它們就不是同一數列,例如數列1,2,3,4,5與數列5,4,3,2,1是不同的數列.

(2)在數列的定義中并沒有規(guī)定數列中的數必須不同,因此,在同一數列中可以出現多個相同的數字,如:-1的1次冪,2次冪,3次冪,4次冪,…構成數列:-1,1,-1,1,….

(4)數列的項與它的項數是不同的,數列的項是指這個數列中的某一個確定的數,是一個函數值,也就是相當于f(n),而項數是指這個數在數列中的位置序號,它是自變量的值,相當于f(n)中的n.

(5)次序對于數列來講是十分重要的,有幾個相同的數,由于它們的排列次序不同,構成的數列就不是一個相同的數列,顯然數列與數集有本質的區(qū)別.如:2,3,4,5,6這5個數按不同的次序排列時,就會得到不同的數列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.

2.數列的分類

(1)根據數列的項數多少可以對數列進行分類,分為有窮數列和無窮數列.在寫數列時,對于有窮數列,要把末項寫出,例如數列1,3,5,7,9,…,2n-1表示有窮數列,如果把數列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數列.

(2)按照項與項之間的大小關系或數列的增減性可以分為以下幾類:遞增數列、遞減數列、擺動數列、常數列.

3.數列的通項公式

數列是按一定次序排列的一列數,其內涵的本質屬性是確定這一列數的規(guī)律,這個規(guī)律通常是用式子f(n)來表示的,

這兩個通項公式形式上雖然不同,但表示同一個數列,正像每個函數關系不都能用解析式表達出來一樣,也不是每個數列都能寫出它的通項公式;有的數列雖然有通項公式,但在形式上,又不一定是的,僅僅知道一個數列前面的有限項,無其他說明,數列是不能確定的,通項公式更非.如:數列1,2,3,4,…,

由公式寫出的后續(xù)項就不一樣了,因此,通項公式的歸納不僅要看它的前幾項,更要依據數列的構成規(guī)律,多觀察分析,真正找到數列的內在規(guī)律,由數列前幾項寫出其通項公式,沒有通用的方法可循.

再強調對于數列通項公式的理解注意以下幾點:

(1)數列的通項公式實際上是一個以正整數集N*或它的有限子集{1,2,…,n}為定義域的函數的表達式.

(2)如果知道了數列的通項公式,那么依次用1,2,3,…去替代公式中的n就可以求出這個數列的各項;同時,用數列的通項公式也可判斷某數是否是某數列中的一項,如果是的話,是第幾項.

(3)如所有的函數關系不一定都有解析式一樣,并不是所有的數列都有通項公式.

如2的不足近似值,精確到1,0.1,0.01,0.001,0.000 1,…所構成的數列1,1.4,1.41,1.414,1.414 2,…就沒有通項公式.

(4)有的數列的通項公式,形式上不一定是的,正如舉例中的:

(5)有些數列,只給出它的前幾項,并沒有給出它的構成規(guī)律,那么僅由前面幾項歸納出的數列通項公式并不.

4.數列的圖象

對于數列4,5,6,7,8,9,10每一項的序號與這一項有下面的對應關系:

序號:1 2 3 4 5 6 7

項: 4 5 6 7 8 9 10

這就是說,上面可以看成是一個序號集合到另一個數的集合的映射.因此,從映射、函數的觀點看,數列可以看作是一個定義域為正整集N*(或它的有限子集{1,2,3,…,n})的函數,當自變量從小到大依次取值時,對應的一列函數值.這里的函數是一種特殊的函數,它的自變量只能取正整數.

由于數列的項是函數值,序號是自變量,數列的通項公式也就是相應函數和解析式.

數列是一種特殊的函數,數列是可以用圖象直觀地表示的.

數列用圖象來表示,可以以序號為橫坐標,相應的項為縱坐標,描點畫圖來表示一個數列,在畫圖時,為方便起見,在平面直角坐標系兩條坐標軸上取的單位長度可以不同,從數列的圖象表示可以直觀地看出數列的變化情況,但不精確.

把數列與函數比較,數列是特殊的函數,特殊在定義域是正整數集或由以1為首的有限連續(xù)正整數組成的集合,其圖象是無限個或有限個孤立的點.

5.遞推數列

一堆鋼管,共堆放了七層,自上而下各層的鋼管數構成一個數列:4,5,6,7,8,9,10.①

數列①還可以用如下方法給出:自上而下第一層的鋼管數是4,以下每一層的鋼管數都比上層的鋼管數多1,