以下是©無憂考網(wǎng)為大家整理的高三數(shù)學(xué)說課稿:導(dǎo)數(shù)的幾何意義,供大家學(xué)習(xí)參考!
《導(dǎo)數(shù)的幾何意義》說課稿
一、教材分析:
本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)》(人民教育出版社、課程教材研究所A版教材)選修2-2中第§1.1.3節(jié).作為導(dǎo)數(shù)概念的下位概念課,它是在學(xué)生學(xué)習(xí)了上位概念——平均變化率,瞬時(shí)變化率,及剛剛學(xué)習(xí)了用極限定義導(dǎo)數(shù)基礎(chǔ),進(jìn)一步從幾何意義的基礎(chǔ)上理解導(dǎo)數(shù)的含義與價(jià)值,是可以充分應(yīng)用信息技術(shù)進(jìn)行概念教學(xué)與問題探究的內(nèi)容.導(dǎo)數(shù)的幾何意義的學(xué)習(xí)為下位內(nèi)容——常見函數(shù)導(dǎo)數(shù)的計(jì)算,導(dǎo)數(shù)是研究函數(shù)中的應(yīng)用及研究函數(shù)曲線與直線的位置關(guān)系的基礎(chǔ).因此,導(dǎo)數(shù)的幾何意義有承前啟后的重要作用.
二、教學(xué)目標(biāo)
【知識(shí)與技能目標(biāo)】
(1)知道曲線的切線定義,理解導(dǎo)數(shù)的幾何意義;
——讓學(xué)生感知和初步理解函數(shù) 在 處的導(dǎo)數(shù) 的幾何意義就是函數(shù) 的圖像在 處的切線的斜率,即 =切線的斜率.
(2)導(dǎo)數(shù)幾何意義簡(jiǎn)單的應(yīng)用.
——用導(dǎo)數(shù)的幾何意義解釋實(shí)際生活問題,初步體會(huì)“逼近”和“以直代曲”的數(shù)學(xué)思想方法.
【過程與方法目標(biāo)】
(1) 回顧圓錐曲線的切線的概念,復(fù)習(xí)導(dǎo)數(shù)概念,尋找 在 處的瞬時(shí)變化率的幾何意義;
(2) 觀察P7上探究問題,利用幾何畫板進(jìn)行探究,由學(xué)生參與操作,發(fā)現(xiàn)割線 變化趨勢(shì),分析整理成結(jié)論;
(3) 通過學(xué)生經(jīng)歷或觀察感知由割線逼近“變成”切線的過程,理解導(dǎo)數(shù)的幾何意義;
(4) 高臺(tái)跳水模型中,利用導(dǎo)數(shù)的幾何意義,描述比較 在 , , 處的變化情況,達(dá)到梳理新知的目的,滲透“以直代曲”的數(shù)學(xué)思想;
(5) 通過分析導(dǎo)數(shù)的幾何意義,研究在實(shí)際生活問題中,用區(qū)間較小的范圍的平均變化率,來解決實(shí)際問題的瞬時(shí)變化率.
>>《導(dǎo)數(shù)的幾何意義 高三數(shù)學(xué)說課稿》這篇教育教學(xué)文章來自[淘教案網(wǎng)]www.taojiaoan.com 收集與整理,感謝原作者。
【情感態(tài)度價(jià)值觀目標(biāo)】
(1) 經(jīng)過幾何畫板演示割線“逼近”成切線過程,讓學(xué)生感受函數(shù)圖像的切線“形成”過程,獲得函數(shù)圖像的切線的意義;
(2) 利用“以直代曲”的近似替代的方法,養(yǎng)成學(xué)生分析問題解決問題的方法,初步體會(huì)發(fā)現(xiàn)問題的樂趣;
(3) 增強(qiáng)學(xué)生問題應(yīng)用意識(shí)教育,讓學(xué)生獲得學(xué)習(xí)數(shù)學(xué)的興趣與信心.
三、重點(diǎn)、難點(diǎn)
重點(diǎn):導(dǎo)數(shù)的幾何意義,導(dǎo)數(shù)的實(shí)際應(yīng)用,“以直代曲”數(shù)學(xué)思想方法.
難點(diǎn):對(duì)導(dǎo)數(shù)幾何意義的理解與掌握,在每處“附近”變化率與瞬時(shí)變化率的近似關(guān)系的理解.
關(guān)鍵:由割線 趨向切線動(dòng)態(tài)變化效果,由割線“逼近”成切線的理解.
四、教學(xué)過程
教學(xué)環(huán)節(jié)
教學(xué)內(nèi)容
師生互動(dòng)
設(shè)計(jì)意圖
溫
故
知
新
誘
發(fā)
思
考
1. 初中平面幾何中圓的切線的定義;
2.公共點(diǎn)的個(gè)數(shù)是否適應(yīng)一般曲線的切線的定義的討論;
3.用幻燈片演示圓的切線和一般曲線的切線情形.
回顧:初中平面幾何中圓的切線的定義是什么?
思考:這種定義是否適用于一般曲線的切線呢?
提問:你能否用你已經(jīng)學(xué)過的函數(shù)曲線的切線舉出反例?
強(qiáng)調(diào):圓是一種特殊的曲線,這種定義并不適用于一般曲線的切線.
教師提出三個(gè)層次的問題,由學(xué)生思考后回答,誘發(fā)學(xué)生對(duì)圓的切線定義的局限的反思;
借助幻燈片演示感知曲線切線定義的各種情形,為尋找切線的逼近定義提供“親身”經(jīng)歷.
實(shí)
驗(yàn)
觀
察
思
維
辨
析
演示實(shí)驗(yàn):如圖,當(dāng)點(diǎn) ( , , , )沒著曲線 趨近點(diǎn) 時(shí),割線 的變化趨勢(shì)是什么(借助幾何畫板由割線逼近成切線的過程).
演示過程:
板書:1.曲線的切線的定義
當(dāng) 時(shí),割線 (確定位置) ,
PT叫做曲線在點(diǎn)P處的切線.
2.導(dǎo)數(shù)的幾何意義
函數(shù)f(x)在x=x0處的導(dǎo)數(shù)是切線PT的斜率k.即
.
1.交流討論觀察結(jié)果;
2.思考割線 的斜率 與切線 的斜率 有什么關(guān)系;
3.參與分析和推導(dǎo)函數(shù)f(x)在x=x0處的導(dǎo)數(shù)的幾何意義.
1.讓學(xué)生參與曲線的切的逼近發(fā)現(xiàn)過程,初步體會(huì)曲線的切線的逼近定義;
2.初步感知數(shù)學(xué)定義的嚴(yán)謹(jǐn)性和幾何意義的直觀性;
3.讓學(xué)生利用已學(xué)的導(dǎo)數(shù)的定義,推出導(dǎo)數(shù)的幾何意義,讓學(xué)生分享發(fā)現(xiàn)的快樂.
觀察發(fā)現(xiàn) 思維升華
板書:3.?dāng)?shù)學(xué)思想方法:“以直代曲”思想方法.即
曲線上某點(diǎn)的切線近似代替這一點(diǎn)附近的曲線(通過幾何畫板演示).
1.教師誘導(dǎo)學(xué)生觀察,并下結(jié)論,教師強(qiáng)調(diào),“以直代曲”的數(shù)學(xué)思想方法,是微積分學(xué)中的重要思想方法.
2.放大點(diǎn)P的附近,感受切線近似于曲線.
1.讓學(xué)生直觀感知:在點(diǎn)P的附近,PP2比PP1更接近曲線f(x),PP3比PP2更接近曲線f(x),…….過點(diǎn)P的切線PT貼近P附近的曲線f(x).
2.體會(huì)“以直代曲”.
學(xué)而習(xí)之小試牛刀
例1:求拋物線 在點(diǎn) 處的切線方程.
變式訓(xùn)練:過拋物線 的點(diǎn) 處的切
線平行直線 ,
求點(diǎn) 的坐標(biāo).
1.引導(dǎo)學(xué)生分析:切線在切點(diǎn)A處的斜率應(yīng)該是什么?
2.由學(xué)生根據(jù)導(dǎo)數(shù)的定義式求函數(shù)在x=1處的導(dǎo)數(shù),教師寫出規(guī)范的板書;
3.提出變式訓(xùn)練.
1.初步體會(huì)導(dǎo)數(shù)的幾何意義;
2.回顧用導(dǎo)數(shù)的定義求某處的導(dǎo)數(shù);
3.設(shè)切點(diǎn),由求知數(shù)來表示導(dǎo)數(shù);
4.規(guī)范解題格式