專題一:三角函數(shù)與平面向量
一、高考動向:
1.三角函數(shù)的性質(zhì)、圖像及其變換,主要是yAsin(x)的性質(zhì)、圖像及變換.考查三角函數(shù)的概念、奇偶性、周期性、單調(diào)性、有界性、圖像的平移和對稱等.以選擇題或填空題或解答題形式出現(xiàn),屬中低檔題,這些試題對三角函數(shù)單一的性質(zhì)考查較少,一道題所涉及的三角函數(shù)性質(zhì)在兩個或兩個以上,考查的知識點來源于教材.
2.三角變換.主要考查公式的靈活運用、變換能力,一般要運用和角、差角與二倍角公式,尤其是對公式的應(yīng)用與三角函數(shù)性質(zhì)的綜合考查.以選擇題或填空題或解答題形式出現(xiàn),屬中檔題.
3.三角函數(shù)的應(yīng)用.以平面向量、解析幾何等為載體,或者用解三角形來考查學(xué)生對三角恒等變形及三角函數(shù)性質(zhì)的應(yīng)用的綜合能力.特別要注意三角函數(shù)在實際問題中的應(yīng)用和跨知識點的應(yīng)用,注意三角函數(shù)在解答有關(guān)函數(shù)、向量、平面幾何、立體幾何、解析幾何等問題時的工具性作用.這類題一般以解答題的形式出現(xiàn),屬中檔題.
4.在一套高考試題中,三角函數(shù)一般分別有1個選擇題、1個填空題和1個解答題,或選擇題與填空題1個,解答題1個,分值在17分—22分之間.
5.在高考試題中,三角題多以低檔或中檔題目為主,一般不會出現(xiàn)較難題,更不會出現(xiàn)難題,因而三角題是高考中的得分點.
二、知識再現(xiàn):
三角函數(shù)跨學(xué)科應(yīng)用是它的鮮明特點,在解答函數(shù),不等式,立體幾何問題時,三角函數(shù)是常用的工具,在實際問題中也有廣泛的應(yīng)用,平面向量的綜合問題是“新熱點”題型,其形式為與直線、圓錐1
(1)常用方法:①
②
③
(2)化簡要求:① ②
③ ④ ⑤
2.三角函數(shù)的圖象與性質(zhì)
(1)解圖象的變換題時,提倡先平移,但先伸縮后平移也經(jīng)常出現(xiàn),無論哪種變形,請切記每一個變換總是對字母 而言,即圖象變換要看“變量”起多大變化,而不是“角變化”多少。
(2)函數(shù)ysinx,ycosx,ytanx圖象的對稱中心分別為
(kZ)
(3)函數(shù)ysinx,ycosx圖象的對稱軸分別為直線 kZ
3.向量加法的“三角形法則”與“平行四邊形法則”
(1)用平行四邊形法則時,兩個已知向量是要共 的,和向量是始點與已知向量的 重合的那條對角線,而差向量是 ,方向是從 指向 。
(2)三角形法則的特點是 ,由第一個向量的 指向后一個向量的 的有向線段就表示這些向量的和,差向量是從 的終點指向 的終點。
(3)當(dāng)兩個向量的起點公共時,用 法則;當(dāng)兩個向量是首尾連接時,用 法則。
三、課前熱身:
1.(天津卷)把函數(shù)ysinx(xR)的圖象上所有點向左平行移動個單位長度,再把所得圖象上32 / 50 143866467.doc TopSage.com
1倍(縱坐標(biāo)不變),得到的圖象所表示的函數(shù)是 2
x(A)ysin(2x),xR (B)ysin(),xR 326
2(C)ysin(2x),xR (D)ysin(2x),xR 332.(湖南卷)設(shè)D、E、F分別是△ABC的三邊BC、CA、AB上的點,且DC2BD,CE2EA, 所有點的橫坐標(biāo)縮短到原來的
AF2FB,則ADBECF與BC( )
A.反向平行
C.互相垂直 B.同向平行 D.既不平行也不垂直
0)的單調(diào)遞增區(qū)間是() 3.
(江蘇)函數(shù)f(x)sinxx(xπ,
A.π,
5π 6B.5ππ, 66C.,0 π
3D.,0 π
6
4.(重慶卷)若過兩點P1P2所成的比1(1,2),P2(5,6)的直線與x軸相交于點P,則P點分有向線段P
的值為
(A)-111 (B) - (C) 355(D) 1 35.a(chǎn),,為△ABCBC若mn,且acosBbcosAcsinC,則角B= .
四、典題體驗:
例1 (安徽卷)已知0,1,A.
2,sin4 55sin2sin2(Ⅰ)求的值; (Ⅱ)求tan()的值。 24coscos2
例2.已知(2,2),與的夾角為
(1)求b
2(2)設(shè)t(1,0),且bt,c(cosA,2cos3,有2 4C),其中A,C是ABC的內(nèi)角,若A
,
B,C依次成等2
的取值范圍。例3. 在ABC中,角A、B、C所對的邊是a,b,c,且a2c2b2
(1)求sin21ac. 2ACcos2B的值; 2
(2)若b2,求ABC面積的大值.
變式.在△ABC中,cosB(Ⅰ)求sinA的值;
(Ⅱ)設(shè)△ABC的面積S△ABC
54,cosC. 13533,求BC的長. 2例4(2006湖北)設(shè)函數(shù)f(x)abc,其中向量a(sinx,cosx), b(sinx,3cosx),c(cosx,sinx),xR。
(Ⅰ)
(Ⅱ)、將函數(shù)f(x)的圖像按向量d的d。
例5.設(shè)平面向量3,若存在實數(shù)m(m0)和角,使向量,1,b1,,2222ca(tan23)b,m
tan,且。
(1)求函數(shù)mf()的關(guān)系式;
(2)令ttan,求函數(shù)mg(t)的極值例6.(安徽)設(shè)函數(shù)f(x)cos2x4tsin
其中t≤1,將f(x)的小值記為g(t).
(I)求g(t)的表達式;
(II)討論g(t)在區(qū)間(11),內(nèi)的單調(diào)性并求極值.
本小題主要考查同角三角函數(shù)的基本關(guān)系,倍角的正弦公式,正弦函數(shù)的值域,多項式函數(shù)的導(dǎo)數(shù),函數(shù)的單調(diào)性,考查應(yīng)用導(dǎo)數(shù)分析解決多項式函數(shù)的單調(diào)區(qū)間,極值與值等問題的綜合能力. xxcos4t3t23t4,xR, 22
五、能力提升
1.三角函數(shù)是一種特殊函數(shù),因此,要重視函數(shù)思想對三角函數(shù)的指導(dǎo)意義,要注意數(shù)形結(jié)合、分類整合,化歸與轉(zhuǎn)化思想在三角中的運用,要熟記正弦曲線、余弦曲線、正切曲線的對稱中心和它們的圖象特征,能從圖象中直接看出它們的性質(zhì)。
2.解題策略:切割化弦;活用公式;邊角互化
3.常用技巧:“1”的代換;角的變換;特殊角;輔助角公式;降冪公式
練習(xí)1.(江西卷)如圖,正六邊形ABCDEF
A.ACAF2BC B.2AFC.ACAB D.(AF)其中真命題的代號是 (寫出所有真命題的代號). DAB
π1,g(x)1sin2x. 122
(I)設(shè)xx0是函數(shù)yf(x)圖象的一條對稱軸,求g(x0)的值.
(II)求函數(shù)h(x)f(x)g(x)的單調(diào)遞增區(qū)間. 2.已知函數(shù)f(x)cosx2
3.在△ABC中,內(nèi)角A,B,C對邊的邊長分別是a,b,c,已知c2,C
(Ⅰ)若△ABCa,b;
(Ⅱ)若sinCsin(BA)2sin2A,求△ABC的面積.
本小題主要考查三角形的邊角關(guān)系,三角函數(shù)公式等基礎(chǔ)知識,考查綜合應(yīng)用三角函數(shù)有關(guān)知識的能力.