国产18禁黄网站免费观看,99爱在线精品免费观看,粉嫩metart人体欣赏,99久久99精品久久久久久,6080亚洲人久久精品

初二上冊數學一次函數知識點總結

時間:2017-09-13 14:49:00   來源:無憂考網     [字體: ]

#初中二年級# #初二上冊數學一次函數知識點總結#】初中二年級的數學學習是中學學習的一個重要階段。以下是®無憂考網為您整理的初二上冊數學一次函數知識點總結,希望對大家有幫助。

  一、函數:

  一般地,在某一變化過程中有兩個變量x與y,如果給定一個x值,相應地就確定了一個y值,那么我們稱y是x的函數,其中x是自變量,y是因變量。

  二、自變量取值范圍

  使函數有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實數),分式(分母不為0)、二次根式(被開方數為非負數)、實際意義幾方面考慮。

  三、函數的三種表示法及其優(yōu)缺點

  (1)關系式(解析)法

  兩個變量間的函數關系,有時可以用一個含有這兩個變量及數字運算符號的等式表示,這種表示法叫做關系式(解析)法。

  (2)列表法

  把自變量x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。

  (3)圖象法

  用圖象表示函數關系的方法叫做圖象法。

  四、由函數關系式畫其圖像的一般步驟

  (1)列表:列表給出自變量與函數的一些對應值

  (2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點

  (3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。

  五、正比例函數和一次函數

  1、正比例函數和一次函數的概念

  一般地,若兩個變量x,y間的關系可以表示成(k,b為常數,k0)的形式,則稱y是x的一次函數(x為自變量,y為因變量)。

  特別地,當一次函數中的b=0時(即)(k為常數,k0),稱y是x的正比例函數。

  2、一次函數的圖像:所有一次函數的圖像都是一條直線

  3、一次函數、正比例函數圖像的主要特征:

  一次函數的圖像是經過點(0,b)的直線;正比例函數的圖像是經過原點(0,0)的直線。

  4、正比例函數的性質

  一般地,正比例函數有下列性質:

  (1)當k>0時,圖像經過第一、三象限,y隨x的增大而增大;

  (2)當k<0時,圖像經過第二、四象限,y隨x的增大而減小。

  5、一次函數的性質

  一般地,一次函數有下列性質:

  (1)當k>0時,y隨x的增大而增大

  (2)當k<0時,y隨x的增大而減小

  6、正比例函數和一次函數解析式的確定

  確定一個正比例函數,就是要確定正比例函數定義式(k0)中的常數k。確定一個一次函數,需要確定一次函數定義式(k0)中的常數k和b。解這類問題的一般方法是待定系數法。

  7、一次函數與一元一次方程的關系:

  任何一個一元一次方程都可轉化為:kx+b=0(k、b為常數,k≠0)的形式.而一次函數解析式形式正是y=kx+b(k、b為常數,k≠0).當函數值為0時,即kx+b=0就與一元一次方程完全相同.

  結論:由于任何一元一次方程都可轉化為kx+b=0(k、b為常數,k≠0)的形式.所以解一元一次方程可以轉化為:當一次函數值為0時,求相應的自變量的值.

  從圖象上看,這相當于已知直線y=kx+b確定它與x軸交點的橫坐標值.