高二數(shù)學上學期期末考試復習資料與知識點
一定義
集合是高中數(shù)學中最原始的不定義的概念,只給出描述性的說明。某些確定的且不同的對象集在一起就成為集合。組成集合的對象叫做元素。
二集合的抽象表示形式
用大寫字母A,B,C??表示集合;用小寫字母a,b,c??表示元素。
三元素與集合的關(guān)系
有屬于,不屬于關(guān)系兩種。元素a屬于集合A,記作aA?;元素a不屬于集合A,記作aA?。
四幾種集合的命名
有限集:含有有限個元素的集合;無限集:含有無限個元素的集合;空集:不包含任何元素的集合叫做空集,用?表示;自然數(shù)集:N;正整數(shù)集:N*或N+;整數(shù)集:Z;有理數(shù)集:Q;實數(shù)集:R。
五集合的表示方法
(一)列舉法:把元素一一列舉在大括號內(nèi)的表示方法,例如:{a,b,c}。注意:凡是以列舉法形式出現(xiàn)的集合,往往考察元素的互異性。
(二)描述法:有以下兩種描述方式
1.代號描述:【例】方程2x3x+2=0?的所有解組成的集合,可表示為{x|x2-3x+2=0}。x是集合中元素的代號,豎線也可以寫成冒號或者分號,豎線后面的式子的作用是描述集合中的元素符合的條件。
2.文字描述:將說明元素性質(zhì)的一句話寫在大括號內(nèi)!纠縶大于2小于5的整數(shù)};描述法表示的集合一旦出現(xiàn),首先需要分析元素的意義,也就說要判斷元素到底是什么。
(三)韋恩圖法:用圖形表示集合定義了兩個集合之間的所有關(guān)系。子集有兩種極限情況:
(1)當A成為空集時,A仍為B的子集;
(2)當A和B相等時,A仍為B的子集。真子集:如果所有屬于A的元素都屬于B,而且B中至少有一個元素不屬于A,那么A叫做B的真子集,記作AB?或。真子集也是子集,和子集的區(qū)別之處在于。
對于同一個集合,其真子集的個數(shù)比子集少一個。
(1)求子集或真子集的個數(shù),由n各元素組成的集合,有2n個子集,有2n-1個真子集;
(2)空集的考查:凡是提到一個集合是另一個集合的子集,作為子集的集合首先可以是空集,的等價形式主要有。