【#高二# #高二數(shù)學導數(shù)與函數(shù)的性質必修四知識點#】增加內驅力,從思想上重視高二,從心理上強化高二,使戰(zhàn)勝高考的這個關鍵環(huán)節(jié)過硬起來,是“志存高遠”這四個字在高二年級的全部解釋。©無憂考網高二頻道為正在拼搏的你整理了《高二數(shù)學導數(shù)與函數(shù)的性質必修四知識點》希望你喜歡!
單調性
、湃魧(shù)大于零,則單調遞增;若導數(shù)小于零,則單調遞減;導數(shù)等于零為函數(shù)駐點,不一定為極值點。需代入駐點左右兩邊的數(shù)值求導數(shù)正負判斷單調性。
、迫粢阎瘮(shù)為遞增函數(shù),則導數(shù)大于等于零;若已知函數(shù)為遞減函數(shù),則導數(shù)小于等于零。
根據微積分基本定理,對于可導的函數(shù),有:
如果函數(shù)的導函數(shù)在某一區(qū)間內恒大于零(或恒小于零),那么函數(shù)在這一區(qū)間內單調遞增(或單調遞減),這種區(qū)間也稱為函數(shù)的單調區(qū)間。導函數(shù)等于零的點稱為函數(shù)的駐點,在這類點上函數(shù)可能會取得極大值或極小值(即極值可疑點)。進一步判斷則需要知道導函數(shù)在附近的符號。對于滿足的一點,如果存在使得在之前區(qū)間上都大于等于零,而在之后區(qū)間上都小于等于零,那么是一個極大值點,反之則為極小值點。
x變化時函數(shù)(藍色曲線)的切線變化。函數(shù)的導數(shù)值就是切線的斜率,綠色代表其值為正,紅色代表其值為負,黑色代表值為零。
凹凸性
可導函數(shù)的凹凸性與其導數(shù)的單調性有關。如果函數(shù)的導函數(shù)在某個區(qū)間上單調遞增,那么這個區(qū)間上函數(shù)是向下凹的,反之則是向上凸的。如果二階導函數(shù)存在,也可以用它的正負性判斷,如果在某個區(qū)間上恒大于零,則這個區(qū)間上函數(shù)是向下凹的,反之這個區(qū)間上函數(shù)是向上凸的。曲線的凹凸分界點稱為曲線的拐點。