国产18禁黄网站免费观看,99爱在线精品免费观看,粉嫩metart人体欣赏,99久久99精品久久久久久,6080亚洲人久久精品

2018高一年級(jí)下冊(cè)數(shù)學(xué)教案

時(shí)間:2018-08-01 14:25:00   來(lái)源:無(wú)憂考網(wǎng)     [字體: ]
【#高一# #2018高一年級(jí)下冊(cè)數(shù)學(xué)教案#】學(xué)習(xí)是一個(gè)堅(jiān)持不懈的過(guò)程,走走停停便難有成就。比如燒開(kāi)水,在燒到80度是停下來(lái),等水冷了又燒,沒(méi)燒開(kāi)又停,如此周而復(fù)始,又費(fèi)精力又費(fèi)電,很難喝到水。學(xué)習(xí)也是一樣,學(xué)任何一門(mén)功課,都不能只有三分鐘熱度,而要一鼓作氣,天天堅(jiān)持,久而久之,不論是狀元還是伊人,都會(huì)向你招手。©無(wú)憂考網(wǎng)高一頻道為正在努力學(xué)習(xí)的你整理了《2018高一年級(jí)下冊(cè)數(shù)學(xué)教案》,希望對(duì)你有幫助!

  【篇一】

  教學(xué)目標(biāo):

 。1)理解子集、真子集、補(bǔ)集、兩個(gè)集合相等概念;

 。2)了解全集、空集的意義,

 。3)掌握有關(guān)子集、全集、補(bǔ)集的符號(hào)及表示方法,會(huì)用它們正確表示一些簡(jiǎn)單的集合,培養(yǎng)學(xué)生的符號(hào)表示的能力;

  (4)會(huì)求已知集合的子集、真子集,會(huì)求全集中子集在全集中的補(bǔ)集;

 。5)能判斷兩集合間的包含、相等關(guān)系,并會(huì)用符號(hào)及圖形(文氏圖)準(zhǔn)確地表示出來(lái),培養(yǎng)學(xué)生的數(shù)學(xué)結(jié)合的數(shù)學(xué)思想;

 。6)培養(yǎng)學(xué)生用集合的觀點(diǎn)分析問(wèn)題、解決問(wèn)題的能力.

  教學(xué)重點(diǎn):子集、補(bǔ)集的概念

  教學(xué)難點(diǎn):弄清元素與子集、屬于與包含之間的區(qū)別

  教學(xué)用具:幻燈機(jī)

  教學(xué)過(guò)程設(shè)計(jì)

  (一)導(dǎo)入新課

  上節(jié)課我們學(xué)習(xí)了集合、元素、集合中元素的三性、元素與集合的關(guān)系等知識(shí).

  【提出問(wèn)題】(投影打出)

  已知,,,問(wèn):

  1.哪些集合表示方法是列舉法.

  2.哪些集合表示方法是描述法.

  3.將集M、集從集P用圖示法表示.

  4.分別說(shuō)出各集合中的元素.

  5.將每個(gè)集合中的元素與該集合的關(guān)系用符號(hào)表示出來(lái).將集N中元素3與集M的關(guān)系用符號(hào)表示出來(lái).

  6.集M中元素與集N有何關(guān)系.集M中元素與集P有何關(guān)系.

  【找學(xué)生回答】

  1.集合M和集合N;(口答)

  2.集合P;(口答)

  3.(筆練結(jié)合板演)

  4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)

  5.,,,,,,,(筆練結(jié)合板演)

  6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(口答)

  【引入】在上面見(jiàn)到的集M與集N;集M與集P通過(guò)元素建立了某種關(guān)系,而具有這種關(guān)系的兩個(gè)集合在今后學(xué)習(xí)中會(huì)經(jīng)常出現(xiàn),本節(jié)將研究有關(guān)兩個(gè)集合間關(guān)系的問(wèn)題.

 。ǘ┬率谥R(shí)

  1.子集

  (1)子集定義:一般地,對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,我們就說(shuō)集合A包含于集合B,或集合B包含集合A。

  記作:讀作:A包含于B或B包含A

  當(dāng)集合A不包含于集合B,或集合B不包含集合A時(shí),則記作:AB或BA.

  性質(zhì):①(任何一個(gè)集合是它本身的子集)

 、冢ǹ占侨魏渭系淖蛹

  【置疑】能否把子集說(shuō)成是由原來(lái)集合中的部分元素組成的集合?

  【解疑】不能把A是B的子集解釋成A是由B中部分元素所組成的集合.

  因?yàn)锽的子集也包括它本身,而這個(gè)子集是由B的全體元素組成的.空集也是B的子集,而這個(gè)集合中并不含有B中的元素.由此也可看到,把A是B的子集解釋成A是由B的部分元素組成的集合是不確切的.

 。2)集合相等:一般地,對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí)集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,記作A=B。

  例:,可見(jiàn),集合,是指A、B的所有元素完全相同.

 。3)真子集:對(duì)于兩個(gè)集合A與B,如果,并且,我們就說(shuō)集合A是集合B的真子集,記作:(或),讀作A真包含于B或B真包含A。

  【思考】能否這樣定義真子集:“如果A是B的子集,并且B中至少有一個(gè)元素不屬于A,那么集合A叫做集合B的真子集.”

  集合B同它的真子集A之間的關(guān)系,可用文氏圖表示,其中兩個(gè)圓的內(nèi)部分別表示集合A,B.

  【提問(wèn)】

 。1)寫(xiě)出數(shù)集N,Z,Q,R的包含關(guān)系,并用文氏圖表示。

  (2)判斷下列寫(xiě)法是否正確

 、貯②A③④AA

  性質(zhì):

 。1)空集是任何非空集合的真子集。若A,且A≠,則A;

  (2)如果,,則.

  例1寫(xiě)出集合的所有子集,并指出其中哪些是它的真子集.

  解:集合的所有的子集是,,,,其中,,是的真子集.

  【注意】(

  )子集與真子集符號(hào)的方向。

 。2)易混符號(hào)

 、佟啊迸c“”:元素與集合之間是屬于關(guān)系;集合與集合之間是包含關(guān)系。如R,{1}{1,2,3}

  ②{0}與:{0}是含有一個(gè)元素0的集合,是不含任何元素的集合。

  如:{0}。不能寫(xiě)成={0},∈{0}

  例2見(jiàn)教材P8(解略)

  例3判斷下列說(shuō)法是否正確,如果不正確,請(qǐng)加以改正.

 。1)表示空集;

 。2)空集是任何集合的真子集;

  (3)不是;

 。4)的所有子集是;

 。5)如果且,那么B必是A的真子集;

 。6)與不能同時(shí)成立.

  解:(1)不表示空集,它表示以空集為元素的集合,所以(1)不正確;

  (2)不正確.空集是任何非空集合的真子集;

 。3)不正確.與表示同一集合;

 。4)不正確.的所有子集是;

 。5)正確

 。6)不正確.當(dāng)時(shí),與能同時(shí)成立.

  例4用適當(dāng)?shù)姆?hào)(,)填空:

 。1);;;

 。2);;

  (3);

  (4)設(shè),,,則ABC.

  解:(1)00;

  (2)=,;

 。3),∴;

 。4)A,B,C均表示所有奇數(shù)組成的集合,∴A=B=C.

  【練習(xí)】教材P9

  用適當(dāng)?shù)姆?hào)(,)填空:

  (1);(5);

 。2);(6);

 。3);(7);

 。4);(8).

  解:(1);(2);(3);(4);(5)=;(6);(7);(8).

  提問(wèn):見(jiàn)教材P9例子

  (二)全集與補(bǔ)集

  1.補(bǔ)集:一般地,設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集),記作,即

 。

  A在S中的補(bǔ)集可用右圖中陰影部分表示.

  性質(zhì):S(SA)=A

  如:(1)若S={1,2,3,4,5,6},A={1,3,5},則SA={2,4,6};

 。2)若A={0},則NA=N*;

  (3)RQ是無(wú)理數(shù)集。

  2.全集:

  如果集合S中含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集,全集通常用表示.

  注:是對(duì)于給定的全集而言的,當(dāng)全集不同時(shí),補(bǔ)集也會(huì)不同.

  例如:若,當(dāng)時(shí),;當(dāng)時(shí),則.

  例5設(shè)全集,,,判斷與之間的關(guān)系.

  解:∵

  ∴

  ∵

  ∴

  ∴

  練習(xí):見(jiàn)教材P10練習(xí)

  1.填空:

  ,,,那么,.

  解:,

  2.填空:

 。1)如果全集,那么N的補(bǔ)集;

 。2)如果全集,,那么的補(bǔ)集()=.

  解:(1);(2).

  (三)小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:

  1.五個(gè)概念(子集、集合相等、真子集、補(bǔ)集、全集,其中子集、補(bǔ)集為重點(diǎn))

  2.五條性質(zhì)

 。1)空集是任何集合的子集。ΦA(chǔ)

 。2)空集是任何非空集合的真子集。ΦA(chǔ)(A≠Φ)

 。3)任何一個(gè)集合是它本身的子集。

  (4)如果,,則.

  (5)S(SA)=A

  3.兩組易混符號(hào):(1)“”與“”:(2){0}與

 。ㄋ模┱n后作業(yè):見(jiàn)教材P10習(xí)題1.2

  【篇二】

  一、教學(xué)目標(biāo)

  (1)了解含有“或”、“且”、“非”復(fù)合命題的概念及其構(gòu)成形式;

  (2)理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義;

 。3)能用邏輯聯(lián)結(jié)詞和簡(jiǎn)單命題構(gòu)成不同形式的復(fù)合命題;

 。4)能識(shí)別復(fù)合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡(jiǎn)單命題;

  (5)會(huì)用真值表判斷相應(yīng)的復(fù)合命題的真假;

  (6)在知識(shí)學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡(jiǎn)單推理的技能.

  二、教學(xué)重點(diǎn)難點(diǎn):

  重點(diǎn)是判斷復(fù)合命題真假的方法;難點(diǎn)是對(duì)“或”的含義的理解.

  三、教學(xué)過(guò)程

  1.新課導(dǎo)入

  在當(dāng)今社會(huì)中,人們從事任何工作、學(xué)習(xí),都離不開(kāi)邏輯.具有一定邏輯知識(shí)是構(gòu)成一個(gè)公民的文化素質(zhì)的重要方面.?dāng)?shù)學(xué)的特點(diǎn)是邏輯性強(qiáng),特別是進(jìn)入高中以后,所學(xué)的教學(xué)比初中更強(qiáng)調(diào)邏輯性.如果不學(xué)習(xí)一定的邏輯知識(shí),將會(huì)在我們學(xué)習(xí)的過(guò)程中不知不覺(jué)地經(jīng)常犯邏輯性的錯(cuò)誤.其實(shí),同學(xué)們?cè)诔踔幸呀?jīng)開(kāi)始接觸一些簡(jiǎn)易邏輯的知識(shí).

  初一平面幾何中曾學(xué)過(guò)命題,請(qǐng)同學(xué)們舉一個(gè)命題的例子.(板書(shū):命題.)

  (從初中接觸過(guò)的“命題”入手,提出問(wèn)題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識(shí).)

  學(xué)生舉例:平行四邊形的對(duì)角線互相平.……(1)

  兩直線平行,同位角相等.…………(2)

  教師提問(wèn):“……相等的角是對(duì)頂角”是不是命題?……(3)

 。ㄍ瑢W(xué)議論結(jié)果,答案是肯定的.)

  教師提問(wèn):什么是命題?

 。▽W(xué)生進(jìn)行回憶、思考.)

  概念總結(jié):對(duì)一件事情作出了判斷的語(yǔ)句叫做命題.

 。ń處熆隙送瑢W(xué)的回答,并作板書(shū).)

  由于判斷有正確與錯(cuò)誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.

 。ń處熇猛*,和學(xué)生討論以下問(wèn)題.)

  例1判斷以下各語(yǔ)句是不是命題,若是,判斷其真假:

  命題一定要對(duì)一件事情作出判斷,(3)、(4)沒(méi)有對(duì)一件事情作出判斷,所以它們不是命題.

  初中所學(xué)的命題概念涉及邏輯知識(shí),我們今天開(kāi)始要在初中學(xué)習(xí)的基礎(chǔ)上,介紹簡(jiǎn)易邏輯的知識(shí).

  2.講授新課

  大家看課本(人教版,試驗(yàn)修訂本,第一冊(cè)(上))從第25頁(yè)至26頁(yè)例1前,并歸納一下這段內(nèi)容主要講了哪些問(wèn)題?

 。ㄆ毯笳(qǐng)同學(xué)舉手回答,一共講了四個(gè)問(wèn)題.師生一道歸納如下.)

 。1)什么叫做命題?

  可以判斷真假的語(yǔ)句叫做命題.

  判斷一個(gè)語(yǔ)句是不是命題,關(guān)鍵看這語(yǔ)句有沒(méi)有對(duì)一件事情作出了判斷,疑問(wèn)句、祈使句都不是命題.有些語(yǔ)句中含有變量,如中含有變量,在不給定變量的值之前,我們無(wú)法確定這語(yǔ)句的真假(這種含有變量的語(yǔ)句叫做“開(kāi)語(yǔ)句”).

  (2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.

  “或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞.邏輯聯(lián)結(jié)詞除這三種形式外,還有“若…則…”和“當(dāng)且僅當(dāng)”兩種形式.

  對(duì)“或”的理解,可聯(lián)想到集合中“并集”的概念.中的“或”,它是指“”、“”中至少一個(gè)是成立的,即且;也可以且;也可以且.這與生活中“或”的含義不同,例如“你去或我去”,理解上是排斥你我都去這種可能.

  對(duì)“且”的理解,可聯(lián)想到集合中“交集”的概念.中的“且”,是指“”、“這兩個(gè)條件都要滿足的意思.

  對(duì)“非”的理解,可聯(lián)想到集合中的“補(bǔ)集”概念,若命題對(duì)應(yīng)于集合,則命題非就對(duì)應(yīng)著集合在全集中的補(bǔ)集.

  命題可分為簡(jiǎn)單命題和復(fù)合命題.

  不含邏輯聯(lián)結(jié)詞的命題叫做簡(jiǎn)單命題.簡(jiǎn)單命題是不含其他命題作為其組成部分(在結(jié)構(gòu)上不能再分解成其他命題)的命題.

  由簡(jiǎn)單命題和邏輯聯(lián)結(jié)詞構(gòu)成的命題叫做復(fù)合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡(jiǎn)單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結(jié)詞“且”構(gòu)成的復(fù)合命題.

 。4)命題的表示:用,,,,……來(lái)表示.

  (教師根據(jù)學(xué)生回答的情況作補(bǔ)充和強(qiáng)調(diào),特別是對(duì)復(fù)合命題的概念作出分析和展開(kāi).)

  我們接觸的復(fù)合命題一般有“或”、“且”、“非”、“若則”等形式.

  給出一個(gè)含有“或”、“且”、“非”的復(fù)合命題,應(yīng)能說(shuō)出構(gòu)成它的簡(jiǎn)單命題和弄清它所用的邏輯聯(lián)結(jié)詞;應(yīng)能根據(jù)所給出的兩個(gè)簡(jiǎn)單命題,寫(xiě)出含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的復(fù)合命題.

  對(duì)于給出“若則”形式的復(fù)合命題,應(yīng)能找到條件和結(jié)論.

  在判斷一個(gè)命題是簡(jiǎn)單命題還是復(fù)合命題時(shí),不能只從字面上來(lái)看有沒(méi)有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無(wú)“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無(wú)“或”,但它們都是復(fù)合命題.

  3.鞏固新課

  例2判斷下列命題,哪些是簡(jiǎn)單命題,哪些是復(fù)合命題.如果是復(fù)合命題,指出它的構(gòu)成形式以及構(gòu)成它的簡(jiǎn)單命題.

  (1);

 。2)0.5非整數(shù);

 。3)內(nèi)錯(cuò)角相等,兩直線平行;

 。4)菱形的對(duì)角線互相垂直且平分;

  (5)平行線不相交;

  (6)若,則.

 。ㄗ寣W(xué)生有充分的時(shí)間進(jìn)行辨析.教材中對(duì)“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補(bǔ)充.)

  例3寫(xiě)出下表中各給定語(yǔ)的否定語(yǔ)(用課件打出來(lái)).

若給定語(yǔ)為

等于

大于

都是

至多有一個(gè)

至少有一個(gè)

至多有  個(gè)

其否定語(yǔ)分別為

  分析:“等于”的否定語(yǔ)是“不等于”;

  “大于”的否定語(yǔ)是“小于或者等于”;

  “是”的否定語(yǔ)是“不是”;

  “都是”的否定語(yǔ)是“不都是”;

  “至多有一個(gè)”的否定語(yǔ)是“至少有兩個(gè)”;

  “至少有一個(gè)”的否定語(yǔ)是“一個(gè)都沒(méi)有”;

  “至多有個(gè)”的否定語(yǔ)是“至少有個(gè)”.

  (如果時(shí)間寬裕,可讓學(xué)生討論后得出結(jié)論.)

  置疑:“或”、“且”的否定是什么?(視學(xué)生的情況、課堂時(shí)間作適當(dāng)?shù)谋嫖雠c展開(kāi).)

  4.課堂練習(xí):第26頁(yè)練習(xí)1,2.

  5.課外作業(yè):第29頁(yè)習(xí)題1.61,2.