【#初中三年級(jí)# #初三年級(jí)上冊(cè)數(shù)學(xué)教案#】書(shū)籍好比一架梯子,它能引導(dǎo)我們登上知識(shí)的殿堂。書(shū)籍如同一把鑰匙,它能幫助我們開(kāi)啟心靈的智慧之窗。以下是®無(wú)憂考網(wǎng)為您整理的《初三年級(jí)上冊(cè)數(shù)學(xué)教案》,供大家學(xué)習(xí)參考。
一元二次方程
【1.1建立一元二次方程模型】
教學(xué)目標(biāo)
1、在把實(shí)際問(wèn)題轉(zhuǎn)化為一元二次方程的模型的過(guò)程中,形成對(duì)一元二次方程的感性認(rèn)識(shí)。
2、理解一元二次方程的定義,能識(shí)別一元二次方程。
3、知道一元二次方程的一般形式,能熟練地把一元二次方程整理成一般形式,能寫出一般形式的二次項(xiàng)系數(shù)、項(xiàng)系數(shù)和常數(shù)項(xiàng)。
重點(diǎn)難點(diǎn)
重點(diǎn):能建立一元二次方程模型,把一元二次方程整理成一般形式。
難點(diǎn):把實(shí)際問(wèn)題轉(zhuǎn)化為一元二次方程的模型。
教學(xué)過(guò)程
(一)創(chuàng)設(shè)情境
前面我們?cè)褜?shí)際問(wèn)題轉(zhuǎn)化成一元方程和二元方程組的模型,大家已經(jīng)感受到了方程是刻畫(huà)現(xiàn)實(shí)世界數(shù)量關(guān)系的工具。本節(jié)課我們將繼續(xù)進(jìn)行建立方程模型的探究。
1、展示課本P.2問(wèn)題一
引導(dǎo)學(xué)生設(shè)人行道寬度為xm,表示草坪邊長(zhǎng)為35-2xm,找等量關(guān)系,列出方程。
(35-2x)2=900①
2、展示課本P.2問(wèn)題二
引導(dǎo)思考:小明與小亮第相遇以后要再次相遇,他們走的路程有何關(guān)系?怎樣用他們?cè)俅蜗嘤龅臅r(shí)間表示他們各自行駛的路程?
通過(guò)思考上述問(wèn)題,引導(dǎo)學(xué)生設(shè)經(jīng)過(guò)ts小明與小亮相遇,用s表示他們各自行駛的路程,利用路程方面的等量關(guān)系列出方程
2t+×0.01t2=3t②
3、能把①,②化成右邊為0,而左邊是只含有一個(gè)未知數(shù)的二次多項(xiàng)式的形式嗎?讓學(xué)生展開(kāi)討論,并引導(dǎo)學(xué)生把①,②化成下列形式:
4x2-140x+32③
0.01t2-2t=0④
(二)探究新知
1、觀察上述方程③和④,啟發(fā)學(xué)生歸納得出:
如果一個(gè)方程通過(guò)移項(xiàng)可以使右邊為0,而左邊是只含有一個(gè)未知數(shù)的二次多項(xiàng)式,那么這樣的方程叫作一元二次方程,它的一般形式是:
ax2+bx+c=0,(a,b,c是已知數(shù)且a≠0),
其中a,b,c分別叫作二次項(xiàng)系數(shù)、項(xiàng)系數(shù)、常數(shù)項(xiàng)。
2、讓學(xué)生指出方程③,④中的二次項(xiàng)系數(shù)、項(xiàng)系數(shù)和常數(shù)項(xiàng)。
。ㄈ┲v解例題
例1:把方程(x+3)(3x-4)=(x+2)2化成一般形式,并指出它的二次項(xiàng)系數(shù)、項(xiàng)系數(shù)和常數(shù)項(xiàng)。
[解]去括號(hào),得3x2+5x-12=x2+4x+4,
化簡(jiǎn),得2x2+x-16=0。
二次項(xiàng)系數(shù)是2,項(xiàng)系數(shù)是1,常數(shù)項(xiàng)是-16。
點(diǎn)評(píng):一元二次方程的一般形式ax2+bx+c=0(a≠0)具有兩個(gè)特征:一是方程的右邊為0,二是左邊二次項(xiàng)系數(shù)不能為0。此外要使學(xué)生認(rèn)識(shí)到:二次項(xiàng)系數(shù)、項(xiàng)系數(shù)和常數(shù)項(xiàng)都是包括符號(hào)的。
例2:下列方程,哪些是一元方程?哪些是一元二次方程?
(1)2x+3=5x-2;(2)x2=25;
(3)(x-1)(x-2)=x2+6;(4)(x+2)(3x-1)=(x-1)2。
[解]方程(1),(3)是一元方程;方程(2),(4)是一元二次方程。
點(diǎn)評(píng):通過(guò)一元方程與一元二次方程的比較,使學(xué)生深刻理解一元二次方程的意義。
。ㄋ模⿷(yīng)用新知
課本P.4,練習(xí)第3題,
。ㄎ澹┱n堂小結(jié)
1、一元二次方程的顯著特征是:只有一個(gè)未知數(shù),并且未知數(shù)的高次數(shù)是2。
2、一元二次方程的一般形式為:ax2+bx+c=0(a≠0),一元二次方程的二次項(xiàng)系數(shù)、項(xiàng)系數(shù)、常數(shù)項(xiàng)都是根據(jù)一般形式確定的。
3、在把實(shí)際問(wèn)題轉(zhuǎn)化為一元二次方程模型的過(guò)程中,體會(huì)學(xué)習(xí)一元二次方程的必要性和重要性。
。┧伎寂c拓展
當(dāng)常數(shù)a,b,c滿足什么條件時(shí),方程(a-1)x2-bx+c=0是一元二次方程?這時(shí)方程的二次項(xiàng)系數(shù)、項(xiàng)系數(shù)分別是什么?當(dāng)常數(shù)a,b,c滿足什么條件時(shí),方程(a-1)x2-bx+c=0是一元方程?
當(dāng)a≠1時(shí)是一元二次方程,這時(shí)方程的二次項(xiàng)系數(shù)是a-1,項(xiàng)系數(shù)是-b;當(dāng)a=1,b≠0時(shí)是一元方程。
布置作業(yè)
課本習(xí)題1.1中A組第1,2,3題。
教學(xué)后記:
【1.2.1因式分解法、直接開(kāi)平方法(1)】
教學(xué)目標(biāo)
1、進(jìn)一步體會(huì)因式分解法適用于解一邊為0,另一邊可分解成兩個(gè)因式乘積的一元二次方程。
2、會(huì)用因式分解法解某些一元二次方程。
3、進(jìn)一步讓學(xué)生體會(huì)“降次”化歸的思想。
重點(diǎn)難點(diǎn)
重點(diǎn):,掌握用因式分解法解某些一元二次方程。
難點(diǎn):用因式分解法將一元二次方程轉(zhuǎn)化為一元方程。
教學(xué)過(guò)程
。ㄒ唬⿵(fù)習(xí)引入1、提問(wèn):
(1)解一元二次方程的基本思路是什么?
(2)現(xiàn)在我們已有了哪幾種將一元二次方程“降次”為一元方程的方法?
2、用兩種方法解方程:9(1-3x)2=25
(二)創(chuàng)設(shè)情境
說(shuō)明:可用因式分解法或直接開(kāi)平方法解此方程。解得x1=,,x2=-。
1、說(shuō)一說(shuō):因式分解法適用于解什么形式的一元二次方程。
歸納結(jié)論:因式分解法適用于解一邊為0,另一邊可分解成兩個(gè)因式乘積的一元二次方程。
2、想一想:展示課本1.1節(jié)問(wèn)題二中的方程0.01t2-2t=0,這個(gè)方程能用因式分解法解嗎?
。ㄈ┨骄啃轮
引導(dǎo)學(xué)生探索用因式分解法解方程0.01t2-2t=0,解答課本1.1節(jié)問(wèn)題二。
把方程左邊因式分解,得t(0.01t-2)=0,由此得出t=0或0.01t-2=0
解得tl=0,t2=200。
t1=0表明小明與小亮第相遇;t2=200表明經(jīng)過(guò)200s小明與小亮再次相遇。
。ㄋ模┲v解例題
1、展示課本P.8例3。
按課本方式引導(dǎo)學(xué)生用因式分解法解一元二次方程。
2、讓學(xué)生討論P(yáng).9“說(shuō)一說(shuō)”欄目中的問(wèn)題。
要使學(xué)生明確:解方程時(shí)不能把方程兩邊都同除以一個(gè)含未知數(shù)的式子,若方程兩邊同除以含未知數(shù)的式子,可能使方程漏根。
3、展示課本P.9例4。
讓學(xué)生自己嘗試著解,然后看書(shū)上的解答,交換批改,并說(shuō)一說(shuō)在解題時(shí)應(yīng)注意什么。
(五)應(yīng)用新知
課本P.10,練習(xí)。
。┱n堂小結(jié)
1、用因式分解法解一元二次方程的基本步驟是:先把一個(gè)一元二次方程變形,使它的一邊為0,另一邊分解成兩個(gè)因式的乘積,然后使每一個(gè)因式等于0,分別解這兩個(gè)一元方程,得到的兩個(gè)解就是原一元二次方程的解。
2、在解方程時(shí),千萬(wàn)注意兩邊不能同時(shí)除以一個(gè)含有未知數(shù)的代數(shù)式,否則可能丟失方程的一個(gè)根。
。ㄆ撸┧伎寂c拓展
用因式分解法解下列一元二次方程。議一議:對(duì)于含括號(hào)的守霜露次方程,應(yīng)怎樣適當(dāng)變形,再用因式分解法解。
(1)2(3x-2)=(2-3x)(x+1);(2)(x-1)(x+3)=12。
[解](1)原方程可變形為2(3x-2)+(3x-2)(x+1)=0,
(3x-2)(x+3)=0,3x-2=0,或x+3=0,
所以xl=,x2=-3
(2)去括號(hào)、整理得x2+2x-3=12,x2+2x-15=0,
(x+5)(x-3)=0,x+5=0或x-3=0,
所以x1=-5,x2=3
先讓學(xué)生動(dòng)手解方程,然后交流自己的解題經(jīng)驗(yàn),教師引導(dǎo)學(xué)生歸納:對(duì)于含括號(hào)的一元二次方程,若能把括號(hào)看成一個(gè)整體變形,把方程化成一邊為0,另一邊為兩個(gè)式的積,就不用去括號(hào),如上述(1);否則先去括號(hào),把方程整理成一般形式,再看是否能將左邊分解成兩個(gè)式的積,如上述(2)。
布置作業(yè)
教學(xué)后記:
【1.2.1因式分解法、直接開(kāi)平方法(2)】
教學(xué)目標(biāo)
1、知道解一元二次方程的基本思路是“降次”化一元二次方程為一元方程。
2、學(xué)會(huì)用因式分解法和直接開(kāi)平方法解形如(ax+b)2-k=0(k≥0)的方程。
3、引導(dǎo)學(xué)生體會(huì)“降次”化歸的思路。
重點(diǎn)難點(diǎn)
重點(diǎn):掌握用因式分解法和直接開(kāi)平方法解形如(ax+b)2-k=0(k≥0)的方程。
難點(diǎn):通過(guò)分解因式或直接開(kāi)平方將一元二次方程降次為一元方程。
教學(xué)過(guò)程
。ㄒ唬⿵(fù)習(xí)引入
1、判斷下列說(shuō)法是否正確
(1)若p=1,q=1,則pq=l(),若pq=l,則p=1,q=1();
(2)若p=0,g=0,則pq=0(),若pq=0,則p=0或q=0();
(3)若x+3=0或x-6=0,則(x+3)(x-6)=0(),
若(x+3)(x-6)=0,則x+3=0或x-6=0();
(4)若x+3=或x-6=2,則(x+3)(x-6)=1(),
若(x+3)(x-6)=1,則x+3=或x-6=2()。
答案:(1)√,×。(2)√,√。(3)√,√。(4)√,×。
2、填空:若x2=a;則x叫a的,x=;若x2=4,則x=;
若x2=2,則x=。
答案:平方根,±,±2,±。
。ǘ﹦(chuàng)設(shè)情境
前面我們已經(jīng)學(xué)了一元方程和二元方程組的解法,解二元方程組的基本思路是什么?(消元、化二元方程組為一元方程)。由解二元方程組的基本思路,你能想出解一元二次方程的基本思路嗎?
引導(dǎo)學(xué)生思考得出結(jié)論:解一元二次方程的基本思路是“降次”化一元二次方程為一元方程。
給出1.1節(jié)問(wèn)題一中的方程:(35-2x)2-900=0。
問(wèn):怎樣將這個(gè)方程“降次”為一元方程?
(三)探究新知
讓學(xué)生對(duì)上述問(wèn)題展開(kāi)討論,教師再利用“復(fù)習(xí)引入”中的內(nèi)容引導(dǎo)學(xué)生,按課本P.6那樣,用因式分解法和直接開(kāi)平方法,將方程(35-2x)2-900=0“降次”為兩個(gè)一元方程來(lái)解。讓學(xué)生知道什么叫因式分解法和直接開(kāi)平方法。
(四)講解例題
展示課本P.7例1,例2。
按課本方式引導(dǎo)學(xué)生用因式分解法和直接開(kāi)平方法解一元二次方程。
引導(dǎo)同學(xué)們小結(jié):對(duì)于形如(ax+b)2-k=0(k≥0)的方程,既可用因式分解法解,又可用直接開(kāi)平方法解。
因式分解法的基本步驟是:把方程化成一邊為0,另一邊是兩個(gè)因式的乘積(本節(jié)課主要是用平方差公式分解因式)的形式,然后使每一個(gè)因式等于0,分別解兩個(gè)一元方程,得到的兩個(gè)解就是原一元二次方程的解。
直接開(kāi)平方法的步驟是:把方程變形成(ax+b)2=k(k≥0),然后直接開(kāi)平方得ax+b=和ax+b=-,分別解這兩個(gè)一元方程,得到的解就是原一元二次方程的解。
注意:(1)因式分解法適用于一邊是0,另一邊可分解成兩個(gè)因式乘積的一元二次方程;
(2)直接開(kāi)平方法適用于形如(ax+b)2=k(k≥0)的方程,由于負(fù)數(shù)沒(méi)有平方根,所以規(guī)定k≥0,當(dāng)k<0時(shí),方程無(wú)實(shí)數(shù)解。
。ㄎ澹⿷(yīng)用新知
課本P.8,練習(xí)。
(六)課堂小結(jié)
1、解一元二次方程的基本思路是什么?
2、通過(guò)“降次”,把—元二次方程化為兩個(gè)一元方程的方法有哪些?基本步驟是什么?
3、因式分解法和直接開(kāi)平方法適用于解什么形式的一元二次方程?
(七)思考與拓展
不解方程,你能說(shuō)出下列方程根的情況嗎?
(1)-4x2+1=0;(2)x2+3=0;(3)(5-3x)2=0;(4)(2x+1)2+5=0。
答案:(1)有兩個(gè)不相等的實(shí)數(shù)根;(2)和(4)沒(méi)有實(shí)數(shù)根;(3)有兩個(gè)相等的實(shí)數(shù)根
通過(guò)解答這個(gè)問(wèn)題,使學(xué)生明確一元二次方程的解有三種情況。
布置作業(yè)
【1.2.1因式分解法、直接開(kāi)平方法(3)】
考標(biāo)要求:
1體會(huì)因式分解法適用于解一邊為0,另一邊可分解為兩個(gè)因式的乘積的一元二次方程;
2會(huì)用因式分解法解某些一元二次方程。
重點(diǎn):用因式分解法解一元二次方程。
難點(diǎn):用因式分解把一元二次方程化為左邊是兩個(gè)二項(xiàng)式相乘右邊是零的形式。
一填空題(每小題5分,共25分)
1解方程(2+x)(x-3)=0,就相當(dāng)于解方程()
A2+x=0,Bx-3=0C2+x=0且x-3=0,D2+x=0或x-3=0
2用因式分解法解一元二次方程的思路是降次,下面是甲、乙兩位同學(xué)解方程的過(guò)程:
。1)解方程:,小明的解法是:解:兩邊同除以x得:x=2;
(2)解方程:(x-1)(x-2)=2,小亮的解法是:解:x-1=1,x-2=2或者x-1=2,x-2=1,或者,x-1=-1,x-2=-2,或者x-1=-2,x-2=-1∴=2,=4,=3,=0
其中正確的是()
A小明B小亮C都正確D都不正確
3下面方程不適合用因式分解法求解的是()
A2-32=0,B2(2x-3)-=0,,D
4方程2x(x-3)=5(x-3)的根是()
Ax=,Bx=3C=,=3Dx=
5定義一種運(yùn)算“※”,其規(guī)則為:a※b=(a+1)(b+1),根據(jù)這個(gè)規(guī)則,方程x※(x+1)=0的解是()
Ax=0Bx=-1C=0,=-1,D=-1=-2
二填空題(每小題5分,共25分)
6方程(1+)-(1-)x=0解是=_____,=__________
7當(dāng)x=__________時(shí),分式值為零。
8若代數(shù)式與代數(shù)式4(x-3)的值相等,則x=_________________
9已知方程(x-4)(x-9)=0的解是等腰三角形的兩邊長(zhǎng),則這個(gè)等腰三角形的周長(zhǎng)=_______.
10如果,則關(guān)于x的一元二次方程a+bx=0的解是_________
三解答題(每小題10分,共50分)
11解方程
。1)+2x+1=0(2)4-12x+9=0
(3)25=9(4)7x(2x-3)=4(3-2x)
12解方程=(a-2)(3a-4)
13已知k是關(guān)于x的方程4k-8x-k=0的一個(gè)根,求k的值。?
14解方程:-2+1=0
15對(duì)于向上拋的物體,在沒(méi)有空氣阻力的情況下,有如下關(guān)系:h=vt-g,其中h是上升到高度,v是初速度,g是重力加速度,(為方便起見(jiàn),本題中g(shù)取10米/),t是拋出后所經(jīng)過(guò)的時(shí)間。
如果將一物體以每秒25米的初速向上拋,物體多少秒后落到地面
【1.2.2配方法(1)】
教學(xué)目標(biāo)
1、理解“配方”是一種常用的數(shù)學(xué)方法,在用配方法將一元二次方程變形的過(guò)程中,讓學(xué)生進(jìn)一步體會(huì)化歸的思想方法。
2、會(huì)用配方法解二次項(xiàng)系數(shù)為1的一元二次方程。
重點(diǎn)難點(diǎn)
重點(diǎn):會(huì)用配方法解二次項(xiàng)系數(shù)為1的一元二次方程。
難點(diǎn):用配方法將一元二次方程變形成可用因式分解法或直接開(kāi)平方法解的方程。
教學(xué)過(guò)程
。ㄒ唬⿵(fù)習(xí)引入
1、a2±2ab+b2=?
2、用兩種方法解方程(x+3)2-5=0。
如何解方程x2+6x+4=0呢?
。ǘ﹦(chuàng)設(shè)情境
如何解方程x2+6x+4=0呢?
(三)探究新知
1、利用“復(fù)習(xí)引入”中的內(nèi)容引導(dǎo)學(xué)生思考,得知:反過(guò)來(lái)把方程x2+6x+4=0化成(x+3)2-5=0的形式,就可用前面所學(xué)的因式分解法或直接開(kāi)平方法解。
2、怎樣把方程x2+6x+4=0化成(x+3)2-5=0的形式呢?讓學(xué)生完成課本P.10的“做一做”并引導(dǎo)學(xué)生歸納:當(dāng)二次項(xiàng)系數(shù)為“1”時(shí),只要在二次項(xiàng)和項(xiàng)之后加上項(xiàng)系數(shù)一半的平方,再減去這個(gè)數(shù),使得含未知數(shù)的項(xiàng)在一個(gè)完全平方式里,這種做法叫作配方.將方程一邊化為0,另一邊配方后就可以用因式分解法或直接開(kāi)平方法解了,這樣解一元二次方程的方法叫作配方法。
。ㄋ模┲v解例題
例1(課本P.11,例5)
[解](1)x2+2x-3(觀察二次項(xiàng)系數(shù)是否為“l(fā)”)
=x2+2x+12-12-3(在項(xiàng)和二次項(xiàng)之后加上項(xiàng)系數(shù)一半的平方,再減去這個(gè)數(shù),使它與原式相等)
=(x+1)2-4。(使含未知數(shù)的項(xiàng)在一個(gè)完全平方式里)
用同樣的方法講解(2),讓學(xué)生熟悉上述過(guò)程,進(jìn)一步明確“配方”的意義。
例2引導(dǎo)學(xué)生完成P.11~P.12例6的填空。
(五)應(yīng)用新知
1、課本P.12,練習(xí)。
2、學(xué)生相互交流解題經(jīng)驗(yàn)。
。┱n堂小結(jié)
1、怎樣將二次項(xiàng)系數(shù)為“1”的一元二次方程配方?
2、用配方法解一元二次方程的基本步驟是什么?
(七)思考與拓展
解方程:(1)x2-6x+10=0;(2)x2+x+=0;(3)x2-x-1=0。
說(shuō)一說(shuō)一元二次方程解的情況。
[解](1)將方程的左邊配方,得(x-3)2+1=0,移項(xiàng),得(x-3)2=-1,所以原方程無(wú)解。
(2)用配方法可解得x1=x2=-。
(3)用配方法可解得x1=,x2=
一元二次方程解的情況有三種:無(wú)實(shí)數(shù)解,如方程(1);有兩個(gè)相等的實(shí)數(shù)解,如方程(2);有兩個(gè)不相等的實(shí)數(shù)解,如方程(3)。
課后作業(yè)
課本習(xí)題
教學(xué)后記:
【1.2.2配方法(2)】
教學(xué)目標(biāo)
1、理解用配方法解一元二次方程的基本步驟。
2、會(huì)用配方法解二次項(xiàng)系數(shù)為1的一元二次方程。
3、進(jìn)一步體會(huì)化歸的思想方法。
重點(diǎn)難點(diǎn)
重點(diǎn):會(huì)用配方法解一元二次方程.
難點(diǎn):使一元二次方程中含未知數(shù)的項(xiàng)在一個(gè)完全平方式里。
教學(xué)過(guò)程
。ㄒ唬⿵(fù)習(xí)引入
1、用配方法解方程x2+x-1=0,學(xué)生練習(xí)后再完成課本P.13的“做一做”.
2、用配方法解二次項(xiàng)系數(shù)為1的一元二次方程的基本步驟是什么?
。ǘ﹦(chuàng)設(shè)情境
現(xiàn)在我們已經(jīng)會(huì)用配方法解二次項(xiàng)系數(shù)為1的一元二次方程,而對(duì)于二次項(xiàng)系數(shù)不為1的一元二次方程能不能用配方法解?
怎樣解這類方程:2x2-4x-6=0
。ㄈ┨骄啃轮
讓學(xué)生議一議解方程2x2-4x-6=0的方法,然后總結(jié)得出:對(duì)于二次項(xiàng)系數(shù)不為1的一元二次方程,可將方程兩邊同除以二次項(xiàng)的系數(shù),把二次項(xiàng)系數(shù)化為1,然后按上一節(jié)課所學(xué)的方法來(lái)解。讓學(xué)生進(jìn)一步體會(huì)化歸的思想。
。ㄋ模┲v解例題
1、展示課本P.14例8,按課本方式講解。
2、引導(dǎo)學(xué)生完成課本P.14例9的填空。
3、歸納用配方法解一元二次方程的基本步驟:首先將方程化為二次項(xiàng)系數(shù)是1的一般形式;其次加上項(xiàng)系數(shù)的一半的平方,再減去這個(gè)數(shù),使得含未知數(shù)的項(xiàng)在一個(gè)完全平方式里;后將配方后的一元二次方程用因式分解法或直接開(kāi)平方法來(lái)解。
。ㄎ澹⿷(yīng)用新知
課本P.15,練習(xí)。
(六)課堂小結(jié)
1、用配方法解一元二次方程的基本步驟是什么?
2、配方法是一種重要的數(shù)學(xué)方法,它的重要性不僅僅表現(xiàn)在一元二次方程的解法中,在今后學(xué)習(xí)二次函數(shù),高中學(xué)習(xí)二次曲線時(shí)都要經(jīng)常用到。
3、配方法是解一元二次方程的通法,但是由于配方的過(guò)程要進(jìn)行較繁瑣的運(yùn)算,在解一元二次方程時(shí),實(shí)際運(yùn)用較少。
4、按圖1—l的框圖小結(jié)前面所學(xué)解
一元二次方程的算法。
。ㄆ撸┧伎寂c拓展
不解方程,只通過(guò)配方判定下列方程解的
情況。
(1)4x2+4x+1=0;(2)x2-2x-5=0;
(3)–x2+2x-5=0;
[解]把各方程分別配方得
(1)(x+)2=0;
(2)(x-1)2=6;
(3)(x-1)2=-4
由此可得方程(1)有兩個(gè)相等的實(shí)數(shù)根,方程(2)有兩個(gè)不相等的實(shí)數(shù)根,方程(3)沒(méi)有實(shí)數(shù)根。
點(diǎn)評(píng):通過(guò)解答這三個(gè)問(wèn)題,使學(xué)生能靈活運(yùn)用“配方法”,并強(qiáng)化學(xué)生對(duì)一元二次方程解的三種情況的認(rèn)識(shí)。