【#初中二年級# #八年級下冊數(shù)學復習資料#】通過復習,使學生系統(tǒng)掌握基礎知識、基本技能和方法,形成明晰的知識網(wǎng)絡和穩(wěn)定的知識框架。以下是©無憂考網(wǎng)為您整理的《八年級下冊數(shù)學復習資料》,供大家查閱。
【篇一:零指數(shù)冪與負整指數(shù)冪】
重點:冪的性質(zhì)(指數(shù)為全體整數(shù))并會用于計算以及用科學記數(shù)法表示一些絕對值較小的數(shù)
難點:理解和應用整數(shù)指數(shù)冪的性質(zhì)。
一、復習練習:
1、;=;=,=,=。
2、不用計算器計算:÷(—2)2—2-1+
二、指數(shù)的范圍擴大到了全體整數(shù).
1、探索
現(xiàn)在,我們已經(jīng)引進了零指數(shù)冪和負整數(shù)冪,指數(shù)的范圍已經(jīng)擴大到了全體整數(shù).那么,在“冪的運算”中所學的冪的性質(zhì)是否還成立呢?與同學們討論并交流一下,判斷下列式子是否成立.
(1);(2)(a•b)-3=a-3b-3;(3)(a-3)2=a(-3)×2
2、概括:指數(shù)的范圍已經(jīng)擴大到了全體整數(shù)后,冪的運算法則仍然成立。
3、例1計算(2mn2)-3(mn-2)-5并且把結(jié)果化為只含有正整數(shù)指數(shù)冪的形式。
解:原式=2-3m-3n-6×m-5n10=m-8n4=
4練習:計算下列各式,并且把結(jié)果化為只含有正整數(shù)指數(shù)冪的形式:
(1)(a-3)2(ab2)-3;(2)(2mn2)-2(m-2n-1)-3.
三、科學記數(shù)法
1、回憶:在之前的學習中,我們曾用科學記數(shù)法表示一些絕對值較大的數(shù),即利用10的正整數(shù)次冪,把一個絕對值大于10的數(shù)表示成a×10n的形式,其中n是正整數(shù),1≤∣a∣<10.例如,864000可以寫成8.64×105.
2、類似地,我們可以利用10的負整數(shù)次冪,用科學記數(shù)法表示一些絕對值較小的數(shù),即將它們表示成a×10-n的形式,其中n是正整數(shù),1≤∣a∣<10.
3、探索:
10-1=0.1
10-2=
10-3=
10-4=
10-5=
歸納:10-n=
例如,上面例2(2)中的0.000021可以表示成2.1×10-5.
4、例2、一個納米粒子的直徑是35納米,它等于多少米?請用科學記數(shù)法表示.
分析我們知道:1納米=米.由=10-9可知,1納米=10-9米.
所以35納米=35×10-9米.
而35×10-9=(3.5×10)×10-9
=35×101+(-9)=3.5×10-8,
所以這個納米粒子的直徑為3.5×10-8米.
5、練習
①用科學記數(shù)法表示:
(1)0.00003;(2)-0.0000064;(3)0.0000314;(4)2013000.
、谟每茖W記數(shù)法填空:
(1)1秒是1微秒的1000000倍,則1微秒=_________秒;
(2)1毫克=_________千克;
(3)1微米=_________米;(4)1納米=_________微米;
(5)1平方厘米=_________平方米;(6)1毫升=_________立方米.
【篇二:】
1、在同一平面內(nèi)不相交的兩條直線叫做平行線,也可以說這兩條直線互相平行。例1、1、在同一平面內(nèi)兩條直線的位置關(guān)系為(相交)和(平行)。2、兩條直線相交成直角時,就說這兩條直線互相垂直,其…
平行四邊形矩形菱形正方形梯形等腰梯形圖形兩組對邊分別平行的四邊形。定義用“”表示平行四邊形,例如:ABCD,平行四邊形ABCD記作有一個角是直角的平有一組鄰邊相等的平行四邊形是菱形有一組鄰邊相等且…
第十八章平行四邊形的認識知識點回顧:平行四邊形、特殊平行四邊形的特征以及彼此之間的關(guān)系1.矩形是特殊的平行四邊形,矩形的四個內(nèi)角都是_____。矩形的對角線___2.菱形是特殊的平行四邊形,菱形是四條邊都__,它的兩條對角線__每條對角線平…
特殊的平行四邊形和一元二次方程的知識點歸納
【菱形】
1.菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。
2.菱形的性質(zhì):
(1)菱形的性質(zhì)有:①平行四邊形的一切性質(zhì);②四條邊都相等;③對角線互相垂直,并且每一條對角線平分一組對角;④菱形是對稱軸圖形,它有2條對稱軸,分別為它的兩條對角線所在的直線。
(2)菱形面積=底×高=對角線乘積的一半。
3.菱形的判定:
(1)用定義判定(即一組鄰邊相等的平行四邊形是菱形)。
(2)對角線互相垂直的平行四邊形是菱形。
(3)四條邊都相等的四邊形是菱形。
綜上可知,判定菱形時常用的思路:
四條邊都相等菱形
菱形四邊形
平行
四邊形有一組鄰邊相等菱形
【矩形】
1.矩形的定義:有一個角是直角的平行四邊形叫做矩形。
2.矩形的性質(zhì):(1)具有平行四邊形的一切性質(zhì);(2)矩形的四個角都是直角;
(3)矩形的四個角都相等。
4.矩形的判定方法:
(1)用定義判定(即有一個角是直角的平行四邊形是矩形);
(2)三個角都是直角的四邊形是矩形;
(3)對角線相等的平行四邊形是矩形。
綜上可知,判定矩形時常用的思路:
【正方形】
1.正方形的定義:有一組鄰邊相等,并且有一個角是直角的平行四邊形叫做正方形。
2.正方形的性質(zhì):正方形具有平行四邊形、矩形、菱形的一切性質(zhì)。
(1)邊:四條邊相等,鄰邊垂直且相等,對邊平行且相等。
1(2)角:四個角都是直角。
(3)對角線:對角線相等且互相垂直平分,每條對角線平分一組對角。
3.正方形的判定
(1)根據(jù)定義判定;(2)對角線相等的菱形是正方形;
(2)有一個角是直角的菱形是正方形;
(3)有一組鄰邊相等的矩形是正方形;
(4)對角線互相垂直的矩形是正方形。
4.特殊的平行四邊形之間的關(guān)系
矩形、菱形是特殊的平行四邊形,正方形是更特殊的平行四邊形,它既是矩形,又是菱形,它們之間的關(guān)系如圖所示:
5.依次連接四邊形各邊中點所得到的四邊形的形狀:
(1)依次連接任意四邊形各邊中點所得到的四邊形是平行變形;
(2)依次連接對角線相等的四邊形各邊中點所得到的四邊形是菱形;
(3)依次連接對角線垂直的四邊形各邊中點所得到的四邊形是矩形;
(4)依次連接對角線垂直且相等的四邊形各邊中點所得到的四邊形是正方形;
【篇三:正方形】
1、正方形的概念
有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形。
2、正方形的性質(zhì)
(1)具有平行四邊形、矩形、菱形的一切性質(zhì);
(2)正方形的四個角都是直角,四條邊都相等;
(3)正方形的兩條對角線相等,并且互相垂直平分,每一條對角線平分一組對角;
(4)正方形是軸對稱圖形,有4條對稱軸;
(5)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形,兩條對角線把正方形分成四個全等的小等腰直角三角形;
(6)正方形的一條對角線上的一點到另一條對角線的兩端點的距離相等。
3、正方形的判定
(1)判定一個四邊形是正方形的主要依據(jù)是定義,途徑有兩種:
先證它是矩形,再證有一組鄰邊相等。
先證它是菱形,再證有一個角是直角。
(2)判定一個四邊形為正方形的一般順序如下:
先證明它是平行四邊形;
再證明它是菱形(或矩形);
最后證明它是矩形(或菱形)。