導(dǎo)數(shù)是微積分中的重要基礎(chǔ)概念。當函數(shù)y=f(x)的自變量x在一點x0上產(chǎn)生一個增量Δx時,函數(shù)輸出值的增量Δy與自變量增量Δx的比值在Δx趨于0時的極限a如果存在,a即為在x0處的導(dǎo)數(shù),記作f'(x0)或df(x0)/dx。
導(dǎo)數(shù)是函數(shù)的局部性質(zhì)。一個函數(shù)在某一點的導(dǎo)數(shù)描述了這個函數(shù)在這一點附近的變化率。如果函數(shù)的自變量和取值都是實數(shù)的話,函數(shù)在某一點的導(dǎo)數(shù)就是該函數(shù)所代表的曲線在這一點上的切線斜率。導(dǎo)數(shù)的本質(zhì)是通過極限的概念對函數(shù)進行局部的線性逼近。例如在運動學(xué)中,物體的位移對于時間的導(dǎo)數(shù)就是物體的瞬時速度。
不是所有的函數(shù)都有導(dǎo)數(shù),一個函數(shù)也不一定在所有的點上都有導(dǎo)數(shù)。若某函數(shù)在某一點導(dǎo)數(shù)存在,則稱其在這一點可導(dǎo),否則稱為不可導(dǎo)。然而,可導(dǎo)的函數(shù)一定連續(xù);不連續(xù)的函數(shù)一定不可導(dǎo)。
對于可導(dǎo)的函數(shù)f(x),x↦f'(x)也是一個函數(shù),稱作f(x)的導(dǎo)函數(shù)。尋找已知的函數(shù)在某點的導(dǎo)數(shù)或其導(dǎo)函數(shù)的過程稱為求導(dǎo)。實質(zhì)上,求導(dǎo)就是一個求極限的過程,導(dǎo)數(shù)的四則運算法則也來源于極限的四則運算法則。反之,已知導(dǎo)函數(shù)也可以倒過來求原來的函數(shù),即不定積分。微積分基本定理說明了求原函數(shù)與積分是等價的。求導(dǎo)和積分是一對互逆的操作,它們都是微積分學(xué)中最為基礎(chǔ)的概念。
一、隨機事件
主要掌握好(三四五)
(1)事件的三種運算:并(和)、交(積)、差;注意差A(yù)-B可以表示成A與B的逆的積。
(2)四種運算律:交換律、結(jié)合律、分配律、德莫根律。
(3)事件的五種關(guān)系:包含、相等、互斥(互不相容)、對立、相互獨立。
二、概率定義
(1)統(tǒng)計定義:頻率穩(wěn)定在一個數(shù)附近,這個數(shù)稱為事件的概率;(2)古典定義:要求樣本空間只有有限個基本事件,每個基本事件出現(xiàn)的可能性相等,則事件A所含基本事件個數(shù)與樣本空間所含基本事件個數(shù)的比稱為事件的古典概率;
(3)幾何概率:樣本空間中的元素有無窮多個,每個元素出現(xiàn)的可能性相等,則可以將樣本空間看成一個幾何圖形,事件A看成這個圖形的子集,它的概率通過子集圖形的大小與樣本空間圖形的大小的比來計算;
(4)公理化定義:滿足三條公理的任何從樣本空間的子集集合到[0,1]的映射。
三、概率性質(zhì)與公式
(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);
(2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含于A,則P(A-B)=P(A)-P(B);
(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨立,則P(AB)=P(A)P(B);
(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,
貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;
如果一個事件B可以在多種情形(原因)A1,A2,....,An下發(fā)生,則用全概率公式求B發(fā)生的概率;如果事件B已經(jīng)發(fā)生,要求它是由Aj引起的概率,則用貝葉斯公式.
(5)二項概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.當一個問題可以看成n重貝努力試驗(三個條件:n次重復(fù),每次只有A與A的逆可能發(fā)生,各次試驗結(jié)果相互獨立)時,要考慮二項概率公式.