小學三年級數學手抄報素材篇一
我國漢代有位大將,名叫韓信。他每次集合部隊,只要求部下先后按l~3、1~5、1~7報數,然后再報告一下各隊每次報數的余數,他就知道到了多少人。他的這種巧妙算法,人們稱為鬼谷算,也叫隔墻算,或稱為韓信點兵,外國人還稱它為“中國剩余定理”。到了明代,數學家程大位用詩歌概括了這一算法,他寫道:三人同行七十稀,五樹梅花廿一枝,
七子團圓月正半,除百零五便得知。
這首詩的意思是:用3除所得的余數乘上70,加上用5除所得余數乘以21,再加上用7除所得的余數乘上15,結果大于105就減去105的倍數,這樣就知道所求的數了。
比如,一籃雞蛋,三個三個地數余1,五個五個地數余2,七個七個地數余3,籃子里有雞蛋一定是52個。
算式是:
1×70+2×21+3×15=157
157-105=52(個)
小學三年級數學手抄報素材篇二
1、數學家侯振挺侯振挺是我國杰出的數學家,他在數學領域中的累累碩果,曾得到國際數學界的普遍贊譽。但是,你知道嗎?侯振挺小的時候并不太喜歡數學,讓我們一起看看他的故事吧!
侯振挺出生于河南南密縣的一個小村莊。他小的時候村子里還沒有學校,他只好進了一家私塾,但直到轉入小學后,他才開始學習數學。剛開始學習數學時,侯振挺對這些數字、符號感到非常厭煩,上課時總是注意力不集中,回答問題時經常答非所問,惹得同學們哄堂大笑。經過好多次這樣的碰壁,侯振挺反而對數學產生了興趣,再加上老師聯(lián)系實際的啟發(fā),他漸漸地喜歡上了數學。特別是有老師讓他觀察水杯的容積、直徑和高的關系,更引起了他對數學的思索:數學竟有這么多的妙用!
從此以后,他就以頑強的毅力鉆研數學,并體會到:在科學面前,遇到困難,不能示弱,更不能退縮,要像一個勇敢無畏的戰(zhàn)士那樣一往無前,這樣,困難才會被攻克、馴服。正是靠著這種頑強的拼搏精神,侯振挺在科學的攻堅戰(zhàn)中屢戰(zhàn)屢勝,終摘得戴維遜大獎,為祖國爭了光,為全人類作出了特殊的貢獻。
2、中國數學界的女院士
1922年,復旦大學教授胡和生當選為中國科學院院士,成為中國數學界的女院士。
1950年,大學剛剛畢業(yè)的胡和生考上了浙江大學數學專業(yè)的研究生,成為了數學家蘇步青教授的學生。這一年,胡和生22歲。
蘇步青教授是一位非常嚴厲的老師。有,蘇教授把德文版的《黎曼空間曲面論》交給胡和生,讓她研讀這本高深抽象的書,并且要求她每星期報告。胡和生的德文不太好,她便對照德漢詞典一頁頁地啃。一天早上,胡和生沒有準時來報告,蘇教授等了又等,仍不見人影,便很生氣地趕到學生宿舍。“咚、咚、咚”,重重的敲門聲把胡和生從睡夢中驚醒了。她打開門,看到蘇老師用嚴厲的眼光看著自己,知道自己誤了報告的時間。但是蘇教授沒有批評她,因為教授從亮著的燈、攤開的書和桌上擺著的筆記本中知道,她為了把報告準備得充實精彩,又熬了一個通宵。
胡和生始終這樣刻苦學習,為自己打下了堅實的數學基礎。辛勤的勞動換來了豐碩的成果,胡和生成為院士后,在長期的微分幾何研究中取得了許多重要成果,在基礎數學領域作出了杰出的貢獻。
3、值得敬佩的數學家——拉瑪努楊
拉瑪努揚出生在印度一個貧窮的家庭,出生貧寒的他從小就顯露出對數學的非凡才智。在拉瑪努揚的生活中,他沒有一天放松對數學的鉆研,即使在生活漂泊、衣食堪憂的情況下,他還常常思考數學問題,由于拉瑪努揚對數學的執(zhí)著,后來成為了印度數學界一顆燦爛的星星。
有,一位同學好奇地問拉瑪努揚:“人們都稱贊你是數學天才,是這樣的嗎?”拉瑪努揚聽了淡淡一笑:“我根本不是什么數學天才,我只是比別人努力罷了。”說著,他挽起袖子,同學看到了拉瑪努揚的臂肘黝黑黝黑的,而且還結了厚厚的一層老繭。
原來,家境貧寒的拉瑪努揚因為經濟困難,舍不得買紙,只能在石板上演算數學題目,并用臂肘直接涂抹石板上的字跡,日久天長竟磨出了厚厚的老繭。同學驚呆了,他為拉瑪努揚的執(zhí)著和在艱苦環(huán)境下的堅韌不拔而深深感動!
小學三年級數學手抄報素材篇三
數學簡單故事和感悟:故事一:燒水的問題
有好事者提出這樣一個問題:“假如你面前有煤氣灶、水龍頭、水壺和火柴,你想燒些水應當怎樣去做?”
被提問者答道:“在壺中放上水,點燃煤氣,再把水壺放到煤氣灶上。”
提問者肯定了這一回答,接著追問:“如其他條件不變,只是水壺中已有了足夠的水,那你又應當怎樣去做?”
這時被提問者很有信心地答道:“點燃煤氣,再把水壺放到煤氣灶上!
但是提問者說:“物理學家通常都這么做,而數學家們則會倒去壺中的水,并聲稱已把后一問題轉化成先前的問題!
感悟:
數學家“倒去壺中的水”似乎是多此一舉,故事的編創(chuàng)者不是要我們去“倒去壺中的水”,而是引導我們感悟數學家獨特的思維方式──轉化。
學習數學不是問題解決方案的累積記憶,而是要學會把未知的問題轉化成已知的問題,把復雜的問題轉化成簡單的問題,把抽象的問題轉化成具體的問題。數學的轉化思想簡化了我們的思維狀態(tài),提升了我們的思維品質。轉化不是就事論事、一事一策,而是發(fā)掘出問題中本質的內核和原型,再把新問題轉化成與已經能夠解決的問題。
轉化思想是數學的基本思想,它應貫穿在我們數學教學的始終。
故事二:兩只羊的描述
草地上有兩只羊,在藝術家、生物學家、物理學家、數學家看來卻有不同的感受與理解,下面是他們的的描述。
藝術家:“藍天、碧水、綠草、白羊,美哉自然。”
生物學家:“雄雌一對,生生不息!
物理學家:“大羊靜臥,小羊漫步!
數學家:“1+1=2!
感悟:
從故事中不同職業(yè)的人對兩只羊的描述,我們感受到藝術家對自然美的關注,生物學家對生命的關注,物理學家對運動與靜止的關注,而數學家從色彩、性別、狀態(tài)中抽象出數量關系:1+1=2,這是數學高度抽象性的體現。
在數學教學中,學生的數學學習要經歷具體—表象—抽象的過程,教學時要在直觀物體和抽象概念之間構建橋梁,從而引導學生把握事物主要、本質的數學屬性。
抽象有一個學生經歷的過程,而不是直接告訴學生抽象的結果。數學抽象本身又是一個不斷提高的過程,這一過程永無止境。