国产18禁黄网站免费观看,99爱在线精品免费观看,粉嫩metart人体欣赏,99久久99精品久久久久久,6080亚洲人久久精品

初一數(shù)學期中上冊復習資料

時間:2022-08-08 17:05:00   來源:無憂考網(wǎng)     [字體: ]

#初中一年級# #初一數(shù)學期中上冊復習資料#】要想取得好的學習成績,必須要有良好的學習習慣。習慣是經(jīng)過重復練習而鞏固下來的穩(wěn)重持久的條件反射和自然需要。建立良好的學習習慣,就會使自己學習感到有序而輕松。以下是®無憂考網(wǎng)為您整理的《初一數(shù)學期中上冊復習資料》,供大家查閱。



  

1.初一數(shù)學期中上冊復習資料

  幾何圖形

  1、幾何圖形:從形形色色的物體外形中得到的圖形叫做幾何圖形。

  2、立體圖形:這些幾何圖形的各部分不都在同一個平面內(nèi)。

  3、平面圖形:這些幾何圖形的各部分都在同一個平面內(nèi)。

  4、雖然立體圖形與平面圖形是兩類不同的幾何圖形,但它們是互相聯(lián)系的。立體圖形中某些部分是平面圖形。

  5、三視圖:從左面看,從正面看,從上面看

  6、展開圖:有些立體圖形是由一些平面圖形圍成的,將它們的表面適當剪開,可以展開成平面圖形。這樣的平面圖形稱為相應立體圖形的展開圖。

  7、⑴幾何體簡稱體;包圍著體的是面;面面相交形成線;線線相交形成點;

 、泣c無大小,線、面有曲直;

  ⑶幾何圖形都是由點、線、面、體組成的;

 、赛c動成線,線動成面,面動成體;

 、牲c:是組成幾何圖形的基本元素。

  

2.初一數(shù)學期中上冊復習資料

  二元一次方程組

  1.二元一次方程:含有兩個未知數(shù),并且含未知數(shù)項的次數(shù)是1,這樣的方程是二元一次方程.注意:一般說二元一次方程有無數(shù)個解.

  2.二元一次方程組:兩個二元一次方程聯(lián)立在一起是二元一次方程組.

  3.二元一次方程組的解:使二元一次方程組的兩個方程,左右兩邊都相等的兩個未知數(shù)的值,叫二元一次方程組的解.注意:一般說二元一次方程組只有解(即公共解).

  4.二元一次方程組的解法:

  (1)代入消元法;(2)加減消元法;

  (3)注意:判斷如何解簡單是關鍵.

  5.一次方程組的應用:

  (1)對于一個應用題設出的未知數(shù)越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則難列易解

  (2)對于方程組,若方程個數(shù)與未知數(shù)個數(shù)相等時,一般可求出未知數(shù)的值;

  (3)對于方程組,若方程個數(shù)比未知數(shù)個數(shù)少一個時,一般求不出未知數(shù)的值,但總可以求出任何兩個未知數(shù)的關系.

  一元一次不等式(組)

  1.不等式:用不等號,把兩個代數(shù)式連接起來的式子叫不等式.

  2.不等式的基本性質(zhì):

  不等式的基本性質(zhì)1:不等式兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號的方向不變;

  不等式的基本性質(zhì)2:不等式兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變;

  不等式的基本性質(zhì)3:不等式兩邊都乘以(或除以)同一個負數(shù),不等號的方向要改變.

  3.不等式的解集:能使不等式成立的未知數(shù)的值,叫做這個不等式的解;不等式所有解的集合,叫做這個不等式的解集.

  4.一元一次不等式:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,系數(shù)不等于零的不等式,叫做一元一次不等式;它的標準形式是ax+b0或ax+b0,(a0).

  5.一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類似,但一定要注意不等式性質(zhì)3的應用;注意:在數(shù)軸上表示不等式的解集時,要注意空圈和實點.

  

3.初一數(shù)學期中上冊復習資料

   豐富的圖形世界

  1、幾何圖形

  從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。

  立體圖形:有些幾何圖形的各個部分不都在同一平面內(nèi),它們是立體圖形。

  平面圖形:有些幾何圖形的各個部分都在同一平面內(nèi),它們是平面圖形。

  2、點、線、面、體

  (1)幾何圖形的組成

  點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。

  線:面和面相交的地方是線,分為直線和曲線。

  面:包圍著體的是面,分為平面和曲面。

  體:幾何體也簡稱體。

  (2)點動成線,線動成面,面動成體。

  3、常見的幾何體及其特點

  長方體:有8個頂點,12條棱,6個面,且各面都是長方形(正方形是特殊的長方形),正方體是特殊的長方體。

  棱柱:上下兩個面稱為棱柱的底面,其它各面稱為側(cè)面,長方體是四棱柱。

  棱錐:一個面是多邊形,其余各面是有一個公共頂點的三角形。

  圓柱:有上下兩個底面和一個側(cè)面(曲面),兩個底面是半徑相等的圓。圓柱的表面展開圖是由兩個相同的圓形和一個長方形連成。

  圓錐:有一個底面和一個側(cè)面(曲面)。側(cè)面展開圖是扇形,底面是圓。

  球:由一個面(曲面)圍成的幾何體

  4、棱柱及其有關概念:

  棱:在棱柱中,任何相鄰兩個面的交線,都叫做棱。

  側(cè)棱:相鄰兩個側(cè)面的交線叫做側(cè)棱。

  n棱柱有兩個底面,n個側(cè)面,共(n+2)個面;3n條棱,n條側(cè)棱;2n個頂點。

  5、正方體的平面展開圖:11種

  6、截一個正方體:

  (1)用一個平面去截一個正方體,截出的面可能是三角形,四邊形,五邊形,六邊形。

  注意:①正方體只有六個面,所以截面最多有六條邊,即截面邊數(shù)最多的圖形是六邊形.②長方體、棱柱的截面與正方體的截面有相似之處.

  (2)用平面截圓柱體,可能出現(xiàn)以下的幾種情況.

  (3)用平面去截一個圓錐,能截出圓和三角形兩種截面(還有其他截面,初中不予研究)

  (4)用平面去截球體,只能出現(xiàn)一種形狀的截面——圓.

  

4.初一數(shù)學期中上冊復習資料

  整式的加減

  一、代數(shù)式

  1、用運算符號把數(shù)或表示數(shù)的字母連結(jié)而成的式子,叫做代數(shù)式。單獨的一個數(shù)或字母也是代數(shù)式。

  2、用數(shù)值代替代數(shù)式里的字母,按照代數(shù)式里的運算關系計算得出的結(jié)果,叫做代數(shù)式的值。

  二、整式

  1、單項式:

  (1)由數(shù)和字母的乘積組成的代數(shù)式叫做單項式。

  (2)單項式中的數(shù)字因數(shù)叫做這個單項式的系數(shù)。

  (3)一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。

  2、多項式

  (1)幾個單項式的和,叫做多項式。

  (2)每個單項式叫做多項式的項。

  (3)不含字母的項叫做常數(shù)項。

  3、升冪排列與降冪排列

  (1)把多項式按x的指數(shù)從大到小的順序排列,叫做降冪排列。

  (2)把多項式按x的指數(shù)從小到大的順序排列,叫做升冪排列。

  三、整式的加減

  1、整式加減的理論根據(jù)是:去括號法則,合并同類項法則,以及乘法分配率。

  去括號法則:如果括號前是“十”號,把括號和它前面的“+”號去掉,括號里各項都不變符號;如果括號前是“一”號,把括號和它前面的“一”號去掉,括號里各項都改變符號。

  2、同類項:所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。

  合并同類項:

  (1)合并同類項的概念:把多項式中的同類項合并成一項叫做合并同類項。

  (2)合并同類項的法則:同類項的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變。

  (3)合并同類項步驟:

  a.準確的找出同類項。

  b.逆用分配律,把同類項的系數(shù)加在一起(用小括號),字母和字母的指數(shù)不變。

  c.寫出合并后的結(jié)果。

  (4)在掌握合并同類項時注意:

  a.如果兩個同類項的系數(shù)互為相反數(shù),合并同類項后,結(jié)果為0.

  b.不要漏掉不能合并的項。

  c.只要不再有同類項,就是結(jié)果(可能是單項式,也可能是多項式)。

  說明:合并同類項的關鍵是正確判斷同類項。

  3、幾個整式相加減的一般步驟:

  (1)列出代數(shù)式:用括號把每個整式括起來,再用加減號連接。

  (2)按去括號法則去括號。

  (3)合并同類項。

  4、代數(shù)式求值的一般步驟:

  (1)代數(shù)式化簡

  (2)代入計算

  (3)對于某些特殊的代數(shù)式,可采用“整體代入”進行計算。

  

5.初一數(shù)學期中上冊復習資料

  1.有理數(shù):

  (1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);π不是有理數(shù);

  (2)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;

  2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線.

  3.相反數(shù):

  (1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;

  (2)注意:a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;

  4.絕對值:

  (1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;

  (2)絕對值可表示為:

  絕對值的問題經(jīng)常分類討論;

  (3)a|是重要的非負數(shù),即|a|≥0;注意:|a|?|b|=|a?b|,

  5.有理數(shù)比大。(1)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠比0大,負數(shù)永遠比0小;(3)正數(shù)大于一切負數(shù);(4)兩個負數(shù)比大小,絕對值大的反而小;(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.