【#初中一年級# #初一上冊數(shù)學(xué)期中考試考點#】學(xué)習(xí)時集中精力,養(yǎng)成良好學(xué)習(xí)習(xí)慣,是節(jié)省學(xué)習(xí)時間和提高學(xué)習(xí)效率的最為基本的方法。©無憂考網(wǎng)搜集的《初一上冊數(shù)學(xué)期中考試考點》,希望對同學(xué)們有幫助。
1.初一上冊數(shù)學(xué)期中考試考點
整式的加減
一、代數(shù)式
1、用運(yùn)算符號把數(shù)或表示數(shù)的字母連結(jié)而成的式子,叫做代數(shù)式。單獨的一個數(shù)或字母也是代數(shù)式。
2、用數(shù)值代替代數(shù)式里的字母,按照代數(shù)式里的運(yùn)算關(guān)系計算得出的結(jié)果,叫做代數(shù)式的值。
二、整式
1、單項式:
(1)由數(shù)和字母的乘積組成的代數(shù)式叫做單項式。
(2)單項式中的數(shù)字因數(shù)叫做這個單項式的系數(shù)。
(3)一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。
2、多項式
(1)幾個單項式的和,叫做多項式。
(2)每個單項式叫做多項式的項。
(3)不含字母的項叫做常數(shù)項。
3、升冪排列與降冪排列
(1)把多項式按x的指數(shù)從大到小的順序排列,叫做降冪排列。
(2)把多項式按x的指數(shù)從小到大的順序排列,叫做升冪排列。
三、整式的加減
1、整式加減的理論根據(jù)是:去括號法則,合并同類項法則,以及乘法分配率。
去括號法則:如果括號前是“十”號,把括號和它前面的“+”號去掉,括號里各項都不變符號;如果括號前是“一”號,把括號和它前面的“一”號去掉,括號里各項都改變符號。
2、同類項:所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。
合并同類項:
(1)合并同類項的概念:把多項式中的同類項合并成一項叫做合并同類項。
(2)合并同類項的法則:同類項的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變。
(3)合并同類項步驟:
a.準(zhǔn)確的找出同類項。
b.逆用分配律,把同類項的系數(shù)加在一起(用小括號),字母和字母的指數(shù)不變。
c.寫出合并后的結(jié)果。
(4)在掌握合并同類項時注意:
a.如果兩個同類項的系數(shù)互為相反數(shù),合并同類項后,結(jié)果為0.
b.不要漏掉不能合并的項。
c.只要不再有同類項,就是結(jié)果(可能是單項式,也可能是多項式)。
說明:合并同類項的關(guān)鍵是正確判斷同類項。
3、幾個整式相加減的一般步驟:
(1)列出代數(shù)式:用括號把每個整式括起來,再用加減號連接。
(2)按去括號法則去括號。
(3)合并同類項。
4、代數(shù)式求值的一般步驟:
(1)代數(shù)式化簡
(2)代入計算
(3)對于某些特殊的代數(shù)式,可采用“整體代入”進(jìn)行計算。
2.初一上冊數(shù)學(xué)期中考試考點
圖形的初步認(rèn)識
一、立體圖形與平面圖形
1、長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外棱柱、棱錐也是常見的立體圖形。
2、長方形、正方形、三角形、圓等都是平面圖形。
3、許多立體圖形是由一些平面圖形圍成的,將它們適當(dāng)?shù)丶糸_,就可以展開成平面圖形。
二、點和線
1、經(jīng)過兩點有一條直線,并且只有一條直線。
2、兩點之間線段最短。
3、點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。
4、把線段向一方無限延伸所形成的圖形叫做射線。
三、角
1、角是由兩條有公共端點的射線組成的圖形。
2、繞著端點旋轉(zhuǎn)到角的終邊和始邊成一條直線,所成的角叫做平角。
3、繞著端點旋轉(zhuǎn)到終邊和始邊再次重合,所成的角叫做周角。
4、度、分、秒是常用的角的度量單位。
把一個周角360等分,每一份就是一度的角,記作1°;把1度的角60等分,每份叫做1分的角,記作1′;把1分的角60等分,每份叫做1秒的角,記作1″。
四、角的比較
從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線,叫做這個角的平分線。類似的,還有叫的三等分線。
五、余角和補(bǔ)角
1、如果兩個角的和等于90(直角),就說這兩個角互為余角。
2、如果兩個角的和等于180(平角),就說這兩個角互為補(bǔ)角。
3、等角的補(bǔ)角相等。
4、等角的余角相等。
六、相交線
1、定義:兩條直線相交,所成的四個角中有一個角是直角,那么這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
2、注意:
⑴垂線是一條直線。
⑵具有垂直關(guān)系的兩條直線所成的4個角都是90。
、谴怪笔窍嘟坏奶厥馇闆r。
、却怪钡挠浄ǎ篴⊥b,AB⊥CD。
3、畫已知直線的垂線有無數(shù)條。
4、過一點有且只有一條直線與已知直線垂直。
5、連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。
6、直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
7、有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補(bǔ)角。
兩條直線相交有4對鄰補(bǔ)角。
8、有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。兩條直線相交,有2對對頂角。對頂角相等。
七、平行線
1、在同一平面內(nèi),兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。
2、平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行。
3、如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
4、判定兩條直線平行的方法:
(1)兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行。簡單說成:同位角相等,兩直線平行。
(2)兩條直線被第三條直線所截,如果內(nèi)錯角相等,那么這兩條直線平行。簡單說成:內(nèi)錯角相等,兩直線平行。
(3)兩條直線被第三條直線所截,如果同旁內(nèi)角互補(bǔ),那么這兩條直線平行。簡單說成:同旁內(nèi)角互補(bǔ),兩直線平行。
5、平行線的性質(zhì)
(1)兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。
(2)兩條平行線被第三條直線所截,內(nèi)錯角相等。簡單說成:兩直線平行,內(nèi)錯角相等。
(3)兩條平行線被第三條直線所截,同旁內(nèi)角互補(bǔ)。簡單說成:兩直線平行,同旁內(nèi)角互補(bǔ)。
3.初一上冊數(shù)學(xué)期中考試考點
生活中的軸對稱
1、軸對稱圖形:如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠完全重合,那么這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。
2、軸對稱:對于兩個圖形,如果沿一條直線對折后,它們能互相重合,那么稱這兩個圖形成軸對稱,這條直線就是對稱軸?梢哉f成:這兩個圖形關(guān)于某條直線對稱。
3、軸對稱圖形與軸對稱的區(qū)別:軸對稱圖形是一個圖形,軸對稱是兩個圖形的關(guān)系。
聯(lián)系:它們都是圖形沿某直線折疊可以相互重合。
4、成軸對稱的兩個圖形一定全等。
5、全等的兩個圖形不一定成軸對稱。
6、對稱軸是直線。
角平分線的性質(zhì)
1、角平分線所在的直線是該角的對稱軸。
2、性質(zhì):角平分線上的點到這個角的兩邊的距離相等。
線段的垂直平分線
1、垂直于一條線段并且平分這條線段的直線叫做這條線段的垂直平分線,又叫線段的中垂線。
2、性質(zhì):線段垂直平分線上的點到這條線段兩端點的距離相等。
軸對稱圖形有:
等腰三角形(1條或3條)、等腰梯形(1條)、長方形(2條)、菱形(2條)、正方形(4條)、圓(無數(shù)條)、線段(1條)、角(1條)、正五角星。
等腰三角形性質(zhì):
、賰蓚底角相等。②兩個條邊相等。③“三線合一”。④底邊上的高、中線、頂角的平分線所在直線是它的對稱軸。
“等角對等邊”∵∠B=∠C∴AB=AC
“等邊對等角”∵AB=AC∴∠B=∠C
角平分線性質(zhì):
角平分線上的點到角兩邊的距離相等。
∵OA平分∠CADOE⊥AC,OF⊥AD∴OE=OF
垂直平分線性質(zhì):垂直平分線上的點到線段兩端點的距離相等。
∵OC垂直平分AB∴AC=BC
軸對稱的性質(zhì)
1、兩個圖形沿一條直線對折后,能夠重合的點稱為對應(yīng)點(對稱點),能夠重合的線段稱為對應(yīng)線段,能夠重合的角稱為對應(yīng)角。2、關(guān)于某條直線對稱的兩個圖形是全等圖形。
2、如果兩個圖形關(guān)于某條直線對稱,那么對應(yīng)點所連的線段被對稱軸垂直平分。
3、如果兩個圖形關(guān)于某條直線對稱,那么對應(yīng)線段、對應(yīng)角都相等。
鏡面對稱
1、當(dāng)物體正對鏡面擺放時,鏡面會改變它的左右方向;
2、當(dāng)垂直于鏡面擺放時,鏡面會改變它的上下方向;
3、如果是軸對稱圖形,當(dāng)對稱軸與鏡面平行時,其鏡子中影像與原圖一樣;
學(xué)生通過討論,可能會找出以下解決物體與像之間相互轉(zhuǎn)化問題的辦法:
(1)利用鏡子照(注意鏡子的位置擺放);(2)利用軸對稱性質(zhì);
(3)可以把數(shù)字左右顛倒,或做簡單的軸對稱圖形;
(4)可以看像的背面;(5)根據(jù)前面的結(jié)論在頭腦中想象。
4.初一上冊數(shù)學(xué)期中考試考點
平方根:
、偃绻粋正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。
、谌绻粋數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。
③一個正數(shù)有2個平方根/0的平方根為0/負(fù)數(shù)沒有平方根。
、芮笠粋數(shù)A的平方根運(yùn)算,叫做開平方,其中A叫做被開方數(shù)。
立方根:
①如果一個數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。
②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。
、矍笠粋數(shù)A的立方根的運(yùn)算叫開立方,其中A叫做被開方數(shù)。
實數(shù):
、賹崝(shù)分有理數(shù)和無理數(shù)。
、谠趯崝(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。
、勖恳粋實數(shù)都可以在數(shù)軸上的一個點來表示。
5.初一上冊數(shù)學(xué)期中考試考點
數(shù)軸
1.數(shù)軸的概念
規(guī)定了原點,正方向,單位長度的直線叫做數(shù)軸。
注意:⑴數(shù)軸是一條向兩端無限延伸的直線;⑵原點、正方向、單位長度是數(shù)軸的三要素,三者缺一不
可;⑶同一數(shù)軸上的單位長度要統(tǒng)一;⑷數(shù)軸的三要素都是根據(jù)實際需要規(guī)定的。
2.數(shù)軸上的點與有理數(shù)的關(guān)系
、潘械挠欣頂(shù)都可以用數(shù)軸上的點來表示,正有理數(shù)可用原點右邊的點表示,負(fù)有理數(shù)可用原點左邊的點表示,0用原點表示。
、扑械挠欣頂(shù)都可以用數(shù)軸上的點表示出來,但數(shù)軸上的點不都表示有理數(shù),也就是說,有理數(shù)與數(shù)軸上的點不是一一對應(yīng)關(guān)系。(如,數(shù)軸上的點π不是有理數(shù))
3.利用數(shù)軸表示兩數(shù)大小
、旁跀(shù)軸上數(shù)的大小比較,右邊的數(shù)總比左邊的數(shù)大;
、普龜(shù)都大于0,負(fù)數(shù)都小于0,正數(shù)大于負(fù)數(shù);
、莾蓚負(fù)數(shù)比較,距離原點遠(yuǎn)的數(shù)比距離原點近的數(shù)小。
4.數(shù)軸上特殊的(小)數(shù)
、抛钚〉淖匀粩(shù)是0,無的自然數(shù);
⑵最小的正整數(shù)是1,無的正整數(shù);
、堑呢(fù)整數(shù)是-1,無最小的負(fù)整數(shù)
5.a可以表示什么數(shù)
、臿>0表示a是正數(shù);反之,a是正數(shù),則a>0;
、芶<0表示a是負(fù)數(shù);反之,a是負(fù)數(shù),則a<0
、莂=0表示a是0;反之,a是0,,則a=0