【#初中三年級# #九年級數(shù)學(xué)期中下冊知識點(diǎn)#】學(xué)習(xí)是一架保持平衡的天平,一邊是付出,一邊是收獲,少付出少收獲,多付出多收獲,不勞必定無獲!要想取得理想的成績,勤奮至關(guān)重要!只有勤奮學(xué)習(xí),才能成就美好人生!勤奮出天才,這是一面永不褪色的旗幟,它永遠(yuǎn)激勵我們不斷追求、不斷探索。有書好好讀,有書趕快讀,讀書的時間不多。只要我們刻苦拼搏、一心向上,就一定能取得令人滿意的成績。下面是®無憂考網(wǎng)為您整理的《九年級數(shù)學(xué)期中下冊知識點(diǎn)》,僅供大家參考。
1.九年級數(shù)學(xué)期中下冊知識點(diǎn) 篇一
銳角三角函數(shù)
1、正弦:在rt△abc中,銳角∠a的對邊a與斜邊的比叫做∠a的正弦,記作sina,即sina=∠a的對邊/斜邊=a/c;
2、余弦:在rt△abc中,銳角∠a的鄰邊b與斜邊的比叫做∠a的余弦,記作cosa,即cosa=∠a的鄰邊/斜邊=b/c;
3、正切:在rt△abc中,銳角∠a的對邊與鄰邊的比叫做∠a的正切,記作tana,即tana=∠a的對邊/∠a的鄰邊=a/b。
、賢ana是一個完整的符號,它表示∠a的正切,記號里習(xí)慣省去角的符號“∠”;
、趖ana沒有單位,它表示一個比值,即直角三角形中∠a的對邊與鄰邊的比;
、踭ana不表示“tan”乘以“a”;
④tana的值越大,梯子越陡,∠a越大;∠a越大,梯子越陡,tana的值越大。
4、余切:定義:在rt△abc中,銳角∠a的鄰邊與對邊的比叫做∠a的余切,記作cota,即cota=∠a的鄰邊/∠a的對邊=b/a;
5、一個銳角的正弦、余弦、正切、余切分別等于它的余角的余弦、正弦、余切、正切。(通常我們稱正弦、余弦互為余函數(shù)。同樣,也稱正切、余切互為余函數(shù),可以概括為:一個銳角的三角函數(shù)等于它的余角的余函數(shù))用等式表達(dá):
若∠a為銳角,則①sina=cos(90°∠a)等等。
6、記住特殊角的三角函數(shù)值表0°,30°,45°,60°,90°。
7、當(dāng)角度在0°~90°間變化時,正弦值、正切值隨著角度的增大(或減小)而增大(或減小);余弦值、余切值隨著角度的增大(或減小)而減小(或增大)。0≤sinα≤1,0≤cosα≤1。
解直角三角形
1、解直角三角形:在直角三角形中,由已知元素求未知元素的過程。
2、在解直角三角形的過程中用到的關(guān)系:(在△abc中,∠c為直角,∠a、∠b、∠c所對的邊分別為a、b、c,)
(1)三邊之間的關(guān)系:a2+b2=c2;(勾股定理)
(2)兩銳角的關(guān)系:∠a+∠b=90°;
(3)邊與角之間的關(guān)系:
sina=a/c;
cosa=b/c;
tana=a/b。
sina=cosb
cosa=sinb
sina=cos(90°-a)
sin2α+cos2α=1
2.九年級數(shù)學(xué)期中下冊知識點(diǎn) 篇二
二次函數(shù)
1、定義:形如y=ax2+bx+c(a≠0,a、b、c是常數(shù))的函數(shù)叫二次函數(shù)。
2、二次函數(shù)的分類:
①y=ax2:頂點(diǎn)坐標(biāo):原點(diǎn);對稱軸:y軸;
、趛=ax2+c:頂點(diǎn)坐標(biāo):(0、c);對稱軸:y軸;
、踶=a(x-h)2:頂點(diǎn)坐標(biāo):(h、0);對稱軸:直線x=h;
、躽=a(x-h)2+k:頂點(diǎn)坐標(biāo):(h、k);對稱軸:直線x=h;
、輞=ax2+bx+c:頂點(diǎn)坐標(biāo):(-b/2a,4ac-b2/4a);對稱軸:直線x=-b/2a
3、a、b、c符號的判定:
a:開口方向向上→a>0;開口方向向下→a<0。
b:與a左同右異,對稱軸在y軸左側(cè),a、b同號;對稱軸在y軸右側(cè),a、b異號。
c:交與y軸正半軸,c>0;交與y軸負(fù)半軸,c<0
b2-4ac:與x軸交點(diǎn)的個數(shù),△>0→兩個交點(diǎn),△<0→無交點(diǎn),△=0→一個交點(diǎn)。
4、平移規(guī)律:“正左負(fù)右”“正上負(fù)下”。
前提:配方成y=a(x-h)2+k的形式。
5、待定系數(shù)法確定函數(shù)關(guān)系式:
、夙旤c(diǎn)在原點(diǎn)選y=ax2;
②頂點(diǎn)在y軸選y=ax2+c;
、弁ㄟ^坐標(biāo)原點(diǎn)選y=ax2+bx;
④知道頂點(diǎn)在x軸上選y=a(x-h)2;
、葜理旤c(diǎn)坐標(biāo)選y=a(x-h)2+k;
、拗廊c(diǎn)的坐標(biāo)選y=ax2+bx+c。
6、其他應(yīng)用:求與x軸的交點(diǎn)→解一元二次方程;與y軸交點(diǎn)為(0、c)。
7、對稱規(guī)律:
①兩拋物線關(guān)于x軸對稱:a、b、c都變?yōu)槠湎喾磾?shù)。
、趦蓲佄锞關(guān)于y軸對稱:a、c不變,b變?yōu)槠湎喾磾?shù)。
8、實(shí)際問題:利潤=銷售額-總進(jìn)價-其他費(fèi)用,利潤=(售價-進(jìn)價)_銷售量-其他費(fèi)用。
3.九年級數(shù)學(xué)期中下冊知識點(diǎn) 篇三
一、銳角三角函數(shù)
正弦等于對邊比斜邊
余弦等于鄰邊比斜邊
正切等于對邊比鄰邊
余切等于鄰邊比對邊
正割等于斜邊比鄰邊
二、三角函數(shù)的計算
冪級數(shù)
c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)
c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)
它們的各項都是正整數(shù)冪的冪函數(shù),其中c0,c1,c2,...cn...及a都是常數(shù),這種級數(shù)稱為冪級數(shù).
泰勒展開式(冪級數(shù)展開法)
f(x)=f(a)+f'(a)/1!(x-a)+f''(a)/2!(x-a)2+...f(n)(a)/n!(x-a)n+...
三、解直角三角形
1、直角三角形兩個銳角互余。
2、直角三角形的三條高交點(diǎn)在一個頂點(diǎn)上。
3、勾股定理:兩直角邊平方和等于斜邊平方
四、利用三角函數(shù)測高
解直角三角形的應(yīng)用
(1)通過解直角三角形能解決實(shí)際問題中的很多有關(guān)測量問。
如:測不易直接測量的物體的高度、測河寬等,關(guān)鍵在于構(gòu)造出直角三角形,通過測量角的度數(shù)和測量邊的長度,計算出所要求的物體的高度或長度。
(2)解直角三角形的一般過程是:
①將實(shí)際問題抽象為數(shù)學(xué)問題(畫出平面圖形,構(gòu)造出直角三角形轉(zhuǎn)化為解直角三角形問題)。
、诟鶕(jù)題目已知特點(diǎn)選用適當(dāng)銳角三角函數(shù)或邊角關(guān)系去解直角三角形,得到數(shù)學(xué)問題的答案,再轉(zhuǎn)化得到實(shí)際問題的答案。
4.九年級數(shù)學(xué)期中下冊知識點(diǎn) 篇四
一、投影
1.投影:一般地,用光線照射物體,在某個平面(地面、墻壁等)上得到的影子叫做物體的投影,照射光線叫做投影線,投影所在的平面叫做投影面。
2.平行投影:由平行光線形成的投影是平行投影。(光源特別遠(yuǎn))
3.中心投影:由同一點(diǎn)(點(diǎn)光源發(fā)出的光線)形成的投影叫做中心投影
4.正投影:投影線垂直于投影面產(chǎn)生的投影叫做正投影。物體正投影的形狀、大小與它相對于投影面的位置有關(guān)。
5.當(dāng)物體的某個面平行于投影面時,這個面的正投影與這個面的形狀、大小完全相同。當(dāng)物體的某個面頂斜于投影面時,這個面的正投影變小。當(dāng)物體的某個面垂直于投影面時,這個面的正投影成為一條直線。
二、三視圖
1.三視圖:是觀測者從三個不同位置(正面、水平面、側(cè)面)觀察同一個空間幾何體而畫出的圖形。三視圖就是主視圖、俯視圖、左視圖的總稱。另外還有如剖面圖、半剖面圖等做為輔助,基本能完整的表達(dá)物體的結(jié)構(gòu)。
2.主視圖:在正面內(nèi)得到的由前向后觀察物體的視圖。
3.俯視圖:在水平面內(nèi)得到的由上向下觀察物體的視圖。
4.左視圖:在側(cè)面內(nèi)得到的由左向右觀察物體的視圖。
5.三個視圖的位置關(guān)系:
、僦饕晥D在上、俯視圖在下、左視圖在右;
②主視、俯視表示物體的長,主視、左視表示物體的高,左視、俯視表示物體的寬。
③主視、俯視長對正,主視、左視高平齊,左視、俯視寬相等。
6.畫法:看得見的部分的輪廓線畫成實(shí)線,因被其它部分遮檔而看不見的部分的輪廓線畫成虛線。