【一】
1、拋物線y=4x2的焦點(diǎn)坐標(biāo)是________.
2.“x>0”是“x≠0”的______條件.(“充分不必要條件”、“必要不充分”、“充要條件”、“既不充分也不必要條件”).
3、按如圖所示的流程圖運(yùn)算,若輸入x=20,則輸出的k=__.
4、某班級(jí)有50名學(xué)生,現(xiàn)要采取系統(tǒng)抽樣的方法在這50名學(xué)生中抽出10名學(xué)生,將這50名學(xué)生隨機(jī)編號(hào)1~50號(hào),并分組,第一組1~5號(hào),第二組6~10號(hào),…,第十組46~50號(hào),若在第三組中抽得號(hào)碼為12的學(xué)生,則在第八組中抽得號(hào)碼為_(kāi)的學(xué)生
5、口袋中有形狀和大小完全相同的四個(gè)球,球的編號(hào)分別為1,2,3,4,若從袋中隨機(jī)抽取兩個(gè)球,則取出的兩個(gè)球的編號(hào)之和大于5的概率為__
6.已知函數(shù)f(x)=f′π4cosx+sinx,則fπ4的值為_(kāi)____
7、中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線的實(shí)軸與虛軸相等,一個(gè)焦點(diǎn)到一條漸近線的距離為2,則雙曲線方程為_(kāi)__________.
8.曲線C的方程為x2m2+y2n2=1,其中m,n是將一枚骰子先后投擲兩次所得點(diǎn)數(shù),事件A=“方程x2m2+y2n2=1表示焦點(diǎn)在x軸上的橢圓”,那么P(A)=_____.
9、下列四個(gè)結(jié)論正確的是______.(填序號(hào))
、佟皒≠0”是“x+|x|>0”的必要不充分條件;
、谝阎猘、b∈R,則“|a+b|=|a|+|b|”的充要條件是ab>0;
、邸癮>0,且Δ=b2-4ac≤0”是“一元二次不等式ax2+bx+c≥0的解集是R”的充要條件;
、堋皒≠1”是“x2≠1”的充分不必要條件.
10.已知△ABC中,∠ABC=60°,AB=2,BC=6,在BC上任取一點(diǎn)D,則使△ABD為鈍角三角形的概率為_(kāi)__.
11、已知點(diǎn)A(0,2),拋物線y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,線段FA交拋物線于點(diǎn)B,過(guò)B作l的垂線,垂足為M,若AM⊥MF,則p=
12.已知命題:“x∈R,ax2-ax-20”,如果命題是假命題,則實(shí)數(shù)a的取值范圍是_____.
13.在平面直角坐標(biāo)系xOy中,橢圓x2a2+y2b2=1(a>b>0)的左焦點(diǎn)為F,右頂點(diǎn)為A,P是橢圓上一點(diǎn),l為左準(zhǔn)線,PQ⊥l,垂足為Q.若四邊形PQFA為平行四邊形,則橢圓的離心率e的取值范圍是________.
14、若存在過(guò)點(diǎn)O(0,0)的直線l與曲線f(x)=x3-3x2+2x和y=x2+a都相切,則
a的值是____.
二、解答題:(本大題共6小題,共90分.解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟.)
15.(本題滿分14分)
已知雙曲線過(guò)點(diǎn)(3,-2),且與橢圓4x2+9y2=36有相同的焦點(diǎn).
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)求以雙曲線的右準(zhǔn)線為準(zhǔn)線的拋物線的標(biāo)準(zhǔn)方程.
17、(本題滿分15分)
已知函數(shù)f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R).
(1)若函數(shù)f(x)的圖象過(guò)原點(diǎn),且在原點(diǎn)處的切線斜率為-3,求a,b的值;
(2)若曲線y=f(x)存在兩條垂直于y軸的切線,求a的取值范圍.
18、(本題滿分15分)
中心在原點(diǎn),焦點(diǎn)在x軸上的一橢圓與一雙曲線有共同的焦點(diǎn)F1,F(xiàn)2,且|F1F2|=213,橢圓的長(zhǎng)半軸與雙曲線半實(shí)軸之差為4,離心率之比為3∶7.
(1)求這兩曲線方程;
(2)若P為這兩曲線的一個(gè)交點(diǎn),求cos∠F1PF2的值.
19、(本題滿分16分)
設(shè)a∈{2,4},b∈{1,3},函數(shù)f(x)=12ax2+bx+1.
(1)求f(x)在區(qū)間(-∞,-1]上是減函數(shù)的概率;
(2)從f(x)中隨機(jī)抽取兩個(gè),求它們?cè)?1,f(1))處的切線互相平行的概率.
20、(本題滿分16分)
如圖,在平面直角坐標(biāo)系xOy中,已知橢圓C:x2a2+y2b2=1(a>b>0)的左、右頂點(diǎn)分別是A1,A2,上、下頂點(diǎn)分別為B2,B1,點(diǎn)P35a,m(m>0)是橢圓C上一點(diǎn),PO⊥A2B2,直線PO分別交A1B1,A2B2于點(diǎn)M,N.
(1)求橢圓的離心率;
(2)若MN=4217,求橢圓C的方程;
(3)在第(2)問(wèn)條件下,求點(diǎn)Q()與橢圓C上任意一點(diǎn)T的距離d的最小值.
【答案】
一、填空題本大題共14小題,每小題5分,共計(jì)70分.請(qǐng)把答案直接填寫(xiě)在答題卡相應(yīng)位置上.
1、拋物線y=4x2的焦點(diǎn)坐標(biāo)是__.(0,116)______
2.“x>0”是“x≠0”的____充分不必要____條件.(“充分不必要條件”、“必要不充分”、“充要條件”、“既不充分也不必要條件”).
3、按如圖所示的流程圖運(yùn)算,若輸入x=20,則輸出的k=_3__.
4、某班級(jí)有50名學(xué)生,現(xiàn)要采取系統(tǒng)抽樣的方法在這50名學(xué)生中抽出10名學(xué)生,將這50名學(xué)生隨機(jī)編號(hào)1~50號(hào),并分組,第一組1~5號(hào),第二組6~10號(hào),…,第十組46~50號(hào),若在第三組中抽得號(hào)碼為12的學(xué)生,則在第八組中抽得號(hào)碼為_(kāi)37__的學(xué)生
5、口袋中有形狀和大小完全相同的四個(gè)球,球的編號(hào)分別為1,2,3,4,若從袋中隨機(jī)抽取兩個(gè)球,則取出的兩個(gè)球的編號(hào)之和大于5的概率為__1/3__
6.已知函數(shù)f(x)=f′π4cosx+sinx,則fπ4的值為_(kāi)_1_____
7、中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線的實(shí)軸與虛軸相等,一個(gè)焦點(diǎn)到一條漸近線的距離為2,則雙曲線方程為_(kāi)__x2-y2=2_____________.
8.曲線C的方程為x2m2+y2n2=1,其中m,n是將一枚骰子先后投擲兩次所得點(diǎn)數(shù),事件A=“方程x2m2+y2n2=1表示焦點(diǎn)在x軸上的橢圓”,那么P(A)=___512__.
9、下列四個(gè)結(jié)論正確的是__①③______.(填序號(hào))
、佟皒≠0”是“x+|x|>0”的必要不充分條件;
、谝阎猘、b∈R,則“|a+b|=|a|+|b|”的充要條件是ab>0;
、邸癮>0,且Δ=b2-4ac≤0”是“一元二次不等式ax2+bx+c≥0的解集是R”的充要條件;
④“x≠1”是“x2≠1”的充分不必要條件.
10.已知△ABC中,∠ABC=60°,AB=2,BC=6,在BC上任取一點(diǎn)D,則使△ABD為鈍角三角形的概率為_(kāi)_12___.
11、已知點(diǎn)A(0,2),拋物線y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,線段FA交拋物線于點(diǎn)B,過(guò)B作l的垂線,垂足為M,若AM⊥MF,則p=___2
12.已知命題:“x∈R,ax2-ax-20”,如果命題是假命題,則實(shí)數(shù)a的取值范圍是___(-8,0]_____.
13.在平面直角坐標(biāo)系xOy中,橢圓x2a2+y2b2=1(a>b>0)的左焦點(diǎn)為F,右頂點(diǎn)為A,P是橢圓上一點(diǎn),l為左準(zhǔn)線,PQ⊥l,垂足為Q.若四邊形PQFA為平行四邊形,則橢圓的離心率e的取值范圍是___(2-1,1)_____.
14、若存在過(guò)點(diǎn)O(0,0)的直線l與曲線f(x)=x3-3x2+2x和y=x2+a都相切,則a的值是____1或____.
二、解答題:(本大題共6小題,共90分.解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟.)
16.(本題滿分14分)
已知命題:函數(shù)y=loga(x+1)在(0,+∞)內(nèi)單調(diào)遞減;命題:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點(diǎn).為真,為假,求a的取值范圍.