国产18禁黄网站免费观看,99爱在线精品免费观看,粉嫩metart人体欣赏,99久久99精品久久久久久,6080亚洲人久久精品

高二年級數(shù)學知識點復習

時間:2020-05-22 13:19:00   來源:無憂考網     [字體: ]
【#高二# #高二年級數(shù)學知識點復習#】在學習新知識的同時還要復習以前的舊知識,肯定會累,所以要注意勞逸結合。只有充沛的精力才能迎接新的挑戰(zhàn),才會有事半功倍的學習。©無憂考網高二頻道為你整理了《高二年級數(shù)學知識點復習》希望對你的學習有所幫助!

【篇一】高二年級數(shù)學知識點復習


  1、向量的加法

  向量的加法滿足平行四邊形法則和三角形法則。

  AB+BC=AC。

  a+b=(x+x',y+y')。

  a+0=0+a=a。

  向量加法的運算律:

  交換律:a+b=b+a;

  結合律:(a+b)+c=a+(b+c)。

  2、向量的減法

  如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0.0的反向量為0

  AB-AC=CB.即“共同起點,指向被減”

  a=(x,y)b=(x',y')則a-b=(x-x',y-y').

  4、數(shù)乘向量

  實數(shù)λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣·∣a∣。

  當λ>0時,λa與a同方向;

  當λ<0時,λa與a反方向;

  當λ=0時,λa=0,方向任意。

  當a=0時,對于任意實數(shù)λ,都有λa=0。

  注:按定義知,如果λa=0,那么λ=0或a=0。

  實數(shù)λ叫做向量a的系數(shù),乘數(shù)向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。

  當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;

  當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。

  數(shù)與向量的乘法滿足下面的運算律

  結合律:(λa)·b=λ(a·b)=(a·λb)。

  向量對于數(shù)的分配律(第一分配律):(λ+μ)a=λa+μa.

  數(shù)對于向量的分配律(第二分配律):λ(a+b)=λa+λb.

  數(shù)乘向量的消去律:①如果實數(shù)λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。

  3、向量的的數(shù)量積

  定義:兩個非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。

  定義:兩個向量的數(shù)量積(內積、點積)是一個數(shù)量,記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣。

  向量的數(shù)量積的坐標表示:a·b=x·x'+y·y'。

  向量的數(shù)量積的運算率

  a·b=b·a(交換率);

  (a+b)·c=a·c+b·c(分配率);

  向量的數(shù)量積的性質

  a·a=|a|的平方。

  a⊥b〈=〉a·b=0。

  |a·b|≤|a|·|b|。

【篇二】高二年級數(shù)學知識點復習

  1、導數(shù)的定義:在點處的導數(shù)記作.

  2.導數(shù)的幾何物理意義:曲線在點處切線的斜率

  ①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時速度。a=v/(t)表示加速度。

  3.常見函數(shù)的導數(shù)公式:①;②;③;

  ⑤;⑥;⑦;⑧。

  4.導數(shù)的四則運算法則:

  5.導數(shù)的應用:

  (1)利用導數(shù)判斷函數(shù)的單調性:設函數(shù)在某個區(qū)間內可導,如果,那么為增函數(shù);如果,那么為減函數(shù);

  注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。

  (2)求極值的步驟:

 、偾髮(shù);

  ②求方程的根;

 、哿斜恚簷z驗在方程根的左右的符號,如果左正右負,那么函數(shù)在這個根處取得極大值;如果左負右正,那么函數(shù)在這個根處取得極小值;

  (3)求可導函數(shù)值與最小值的步驟:

 、∏蟮母;ⅱ把根與區(qū)間端點函數(shù)值比較,的為值,最小的是最小值。

【篇三】高二年級數(shù)學知識點復習

  考點一:求導公式。

  例1.f(x)是f(x)13x2x1的導函數(shù),則f(1)的值是3

  考點二:導數(shù)的幾何意義。

  例2.已知函數(shù)yf(x)的圖象在點M(1,f(1))處的切線方程是y

  1x2,則f(1)f(1)2

  ,3)處的切線方程是例3.曲線yx32x24x2在點(1

  點評:以上兩小題均是對導數(shù)的幾何意義的考查。

  考點三:導數(shù)的幾何意義的應用。

  例4.已知曲線C:yx33x22x,直線l:ykx,且直線l與曲線C相切于點x0,y0x00,求直線l的方程及切點坐標。

  點評:本小題考查導數(shù)幾何意義的應用。解決此類問題時應注意“切點既在曲線上又在切線上”這個條件的應用。函數(shù)在某點可導是相應曲線上過該點存在切線的充分條件,而不是必要條件。

  考點四:函數(shù)的單調性。

  例5.已知fxax3xx1在R上是減函數(shù),求a的取值范圍。32

  點評:本題考查導數(shù)在函數(shù)單調性中的應用。對于高次函數(shù)單調性問題,要有求導意識。

  考點五:函數(shù)的極值。

  例6.設函數(shù)f(x)2x33ax23bx8c在x1及x2時取得極值。

  (1)求a、b的值;

  (2)若對于任意的x[0,3],都有f(x)c2成立,求c的取值范圍。

  點評:本題考查利用導數(shù)求函數(shù)的極值。求可導函數(shù)fx的極值步驟:

  ①求導數(shù)f'x;

 、谇骹'x0的根;③將f'x0的根在數(shù)軸上標出,得出單調區(qū)間,由f'x在各區(qū)間上取值的正負可確定并求出函數(shù)fx的極值。

  考點六:函數(shù)的最值。

  例7.已知a為實數(shù),fxx24xa。求導數(shù)f'x;(2)若f'10,求fx在區(qū)間2,2上的值和最小值。

  點評:本題考查可導函數(shù)最值的求法。求可導函數(shù)fx在區(qū)間a,b上的最值,要先求出函數(shù)fx在區(qū)間a,b上的極值,然后與fa和fb進行比較,從而得出函數(shù)的最小值。

  考點七:導數(shù)的綜合性問題。

  例8.設函數(shù)f(x)ax3bxc(a0)為奇函數(shù),其圖象在點(1,f(1))處的切線與直線x6y70垂直,導函數(shù)

  (1)求a,b,c的值;f'(x)的最小值為12。

  (2)求函數(shù)f(x)的單調遞增區(qū)間,并求函數(shù)f(x)在[1,3]上的值和最小值。

  點評:本題考查函數(shù)的奇偶性、單調性、二次函數(shù)的最值、導數(shù)的應用等基礎知識,以及推理能力和運算能力。