国产18禁黄网站免费观看,99爱在线精品免费观看,粉嫩metart人体欣赏,99久久99精品久久久久久,6080亚洲人久久精品

高二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

時(shí)間:2020-08-20 14:47:00   來源:無憂考網(wǎng)     [字體: ]

【#高二# #高二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)#】因?yàn)楦叨_始努力,所以前面的知識(shí)肯定有一定的欠缺,這就要求自己要制定一定的計(jì)劃,更要比別人付出更多的努力,相信付出的汗水不會(huì)白白流淌的,收獲總是自己的。©無憂考網(wǎng)高二頻道為你整理了《高二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)》,助你金榜題名!

【篇一】高二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)


  一、變量間的相關(guān)關(guān)系

  1.常見的兩變量之間的關(guān)系有兩類:一類是函數(shù)關(guān)系,另一類是相關(guān)關(guān)系;與函數(shù)關(guān)系不同,相關(guān)關(guān)系是一種非確定性關(guān)系.

  2.從散點(diǎn)圖上看,點(diǎn)分布在從左下角到右上角的區(qū)域內(nèi),兩個(gè)變量的這種相關(guān)關(guān)系稱為正相關(guān),點(diǎn)分布在左上角到右下角的區(qū)域內(nèi),兩個(gè)變量的相關(guān)關(guān)系為負(fù)相關(guān).

  二、兩個(gè)變量的線性相關(guān)

  1.從散點(diǎn)圖上看,如果這些點(diǎn)從整體上看大致分布在通過散點(diǎn)圖中心的一條直線附近,稱兩個(gè)變量之間具有線性相關(guān)關(guān)系,這條直線叫回歸直線.

  當(dāng)r>0時(shí),表明兩個(gè)變量正相關(guān);

  當(dāng)r<0時(shí),表明兩個(gè)變量負(fù)相關(guān).

  r的絕對(duì)值越接近于1,表明兩個(gè)變量的線性相關(guān)性越強(qiáng).r的絕對(duì)值越接近于0時(shí),表明兩個(gè)變量之間幾乎不存在線性相關(guān)關(guān)系.通常|r|大于0.75時(shí),認(rèn)為兩個(gè)變量有很強(qiáng)的線性相關(guān)性.

  三、解題方法

  1.相關(guān)關(guān)系的判斷方法一是利用散點(diǎn)圖直觀判斷,二是利用相關(guān)系數(shù)作出判斷.

  2.對(duì)于由散點(diǎn)圖作出相關(guān)性判斷時(shí),若散點(diǎn)圖呈帶狀且區(qū)域較窄,說明兩個(gè)變量有一定的線性相關(guān)性,若呈曲線型也是有相關(guān)性.

  3.由相關(guān)系數(shù)r判斷時(shí)|r|越趨近于1相關(guān)性越強(qiáng).

【篇二】高二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

  圓與圓的位置關(guān)系

  1、利用平面直角坐標(biāo)系解決直線與圓的位置關(guān)系;

  2、過程與方法

  用坐標(biāo)法解決幾何問題的步驟:

  第一步:建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,用坐標(biāo)和方程表示問題中的幾何元素,將平面幾何問題轉(zhuǎn)化為代數(shù)問題;

  第二步:通過代數(shù)運(yùn)算,解決代數(shù)問題;

  第三步:將代數(shù)運(yùn)算結(jié)果“翻譯”成幾何結(jié)論.

【篇三】高二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)


  1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長為圓的半徑.

  2、圓的方程

  (1)標(biāo)準(zhǔn)方程,圓心,半徑為r;

  (2)一般方程

  當(dāng)時(shí),方程表示圓,此時(shí)圓心為,半徑為

  當(dāng)時(shí),表示一個(gè)點(diǎn);當(dāng)時(shí),方程不表示任何圖形.

  (3)求圓方程的方法:

  一般都采用待定系數(shù)法:先設(shè)后求.確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,

  需求出a,b,r;若利用一般方程,需要求出D,E,F;

  另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點(diǎn),以此來確定圓心的位置.

  3、高中數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié):直線與圓的位置關(guān)系:

  直線與圓的位置關(guān)系有相離,相切,相交三種情況:

  (1)設(shè)直線,圓,圓心到l的距離為,則有;;

  (2)過圓外一點(diǎn)的切線:k不存在,驗(yàn)證是否成立k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

  (3)過圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

  4、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.

  設(shè)圓,

  兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.

  當(dāng)時(shí)兩圓外離,此時(shí)有公切線四條;

  當(dāng)時(shí)兩圓外切,連心線過切點(diǎn),有外公切線兩條,內(nèi)公切線一條;

  當(dāng)時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

  當(dāng)時(shí),兩圓內(nèi)切,連心線經(jīng)過切點(diǎn),只有一條公切線;

  當(dāng)時(shí),兩圓內(nèi)含;當(dāng)時(shí),為同心圓.

  注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線

  5、空間點(diǎn)、直線、平面的位置關(guān)系

  公理1:如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線是所有的點(diǎn)都在這個(gè)平面內(nèi).

  應(yīng)用:判斷直線是否在平面內(nèi)

  用符號(hào)語言表示公理1:

  公理2:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線

  符號(hào):平面α和β相交,交線是a,記作α∩β=a.

  符號(hào)語言:

  公理2的作用:

  它是判定兩個(gè)平面相交的方法.

  它說明兩個(gè)平面的交線與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線公共點(diǎn).

  它可以判斷點(diǎn)在直線上,即證若干個(gè)點(diǎn)共線的重要依據(jù).

  公理3:經(jīng)過不在同一條直線上的三點(diǎn),有且只有一個(gè)平面.

  推論:一直線和直線外一點(diǎn)確定一平面;兩相交直線確定一平面;兩平行直線確定一平面.

  公理3及其推論作用:它是空間內(nèi)確定平面的依據(jù)它是證明平面重合的依據(jù)

  公理4:平行于同一條直線的兩條直線互相平行