1.高二數學選擇性必修一筆記整理 篇一
判斷函數零點個數的常用方法
1、解方程法:
令f(x)=0,如果能求出解,則有幾個解就有幾個零點。
2、零點存在性定理法:
利用定理不僅要判斷函數在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結合函數的圖象與性質(如單調性、奇偶性、周期性、對稱性)才能確定函數有多少個零點。
3、數形結合法:
轉化為兩個函數的圖象的交點個數問題.先畫出兩個函數的圖象,看其交點的個數,其中交點的個數,就是函數零點的個數。
已知函數有零點(方程有根)求參數取值常用的方法
1、直接法:
直接根據題設條件構建關于參數的不等式,再通過解不等式確定參數范圍。
2、分離參數法:
先將參數分離,轉化成求函數值域問題加以解決。
3、數形結合法:
先對解析式變形,在同一平面直角坐標系中,畫出函數的圖象,然后數形結合求解。
2.高二數學選擇性必修一筆記整理 篇二
函數的性質
函數的單調性、奇偶性、周期性
單調性:定義:注意定義是相對與某個具體的區(qū)間而言。
判定方法有:定義法(作差比較和作商比較)
導數法(適用于多項式函數)
復合函數法和圖像法。
應用:比較大小,證明不等式,解不等式。
奇偶性:定義:注意區(qū)間是否關于原點對稱,比較f(x)與f(-x)的關系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數;f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數。
判別方法:定義法,圖像法,復合函數法
應用:把函數值進行轉化求解。
周期性:定義:若函數f(x)對定義域內的任意x滿足:f(x+T)=f(x),則T為函數f(x)的周期。
其他:若函數f(x)對定義域內的任意x滿足:f(x+a)=f(x-a),則2a為函數f(x)的周期.
應用:求函數值和某個區(qū)間上的函數解析式。
3.高二數學選擇性必修一筆記整理 篇三
總體和樣本
、僭诮y(tǒng)計學中,把研究對象的全體叫做總體。
、诎衙總研究對象叫做個體。
、郯芽傮w中個體的總數叫做總體容量。
④為了研究總體的有關性質,一般從總體中隨機抽取一部分:x1,x2,....,研究,我們稱它為樣本.其中個體的個數稱為樣本容量。
簡單隨機抽樣
也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨。
機地抽取調查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關聯(lián)性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎。通常只是在總體單位之間差異程度較小和數目較少時,才采用這種方法。
簡單隨機抽樣常用的方法
、俪楹灧
②隨機數表法
、塾嬎銠C模擬法
、苁褂媒y(tǒng)計軟件直接抽取。
在簡單隨機抽樣的樣本容量設計中,主要考慮:
、倏傮w變異情況;
②允許誤差范圍;
、鄹怕时WC程度。
抽簽法
、俳o調查對象群體中的每一個對象編號;
、跍蕚涑楹灥墓ぞ,實施抽簽;
、蹖颖局械拿恳粋個體進行測量或調查。
4.高二數學選擇性必修一筆記整理 篇四
分層抽樣
先將總體中的所有單位按照某種特征或標志(性別、年齡等)劃分成若干類型或層次,然后再在各個類型或層次中采用簡單隨機抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構成總體的樣本。
兩種方法
1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。
2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。
3.分層抽樣是把異質性較強的總體分成一個個同質性較強的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進而代表總體。
分層標準
(1)以調查所要分析和研究的主要變量或相關的變量作為分層的標準。
(2)以保證各層內部同質性強、各層之間異質性強、突出總體內在結構的變量作為分層變量。
(3)以那些有明顯分層區(qū)分的變量作為分層變量。
分層的比例問題
(1)按比例分層抽樣:根據各種類型或層次中的單位數目占總體單位數目的比重來抽取子樣本的方法。
(2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會非常少,此時采用該方法,主要是便于對不同層次的子總體進行專門研究或進行相互比較。如果要用樣本資料推斷總體時,則需要先對各層的數據資料進行加權處理,調整樣本中各層的比例,使數據恢復到總體中各層實際的比例結構。
5.高二數學選擇性必修一筆記整理 篇五
(1)算法概念:在數學上,現代意義上的算法通常是指可以用計算機來解決的`某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內完成.
(2)算法的特點:
、儆邢扌裕阂粋算法的步驟序列是有限的,必須在有限操作之后停止,不能是無限的.
、诖_定性:算法中的每一步應該是確定的并且能有效地執(zhí)行且得到確定的結果,而不應當是模棱兩可.
③順序性與正確性:算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個確定的后繼步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進行下一步,并且每一步都準確無誤,才能完成問題.
、懿恍裕呵蠼饽骋粋問題的解法不一定是的,對于一個問題可以有不同的算法.
、萜毡樾裕汉芏嗑唧w的問題,都可以設計合理的算法去解決,如心算、計算器計算都要經過有限、事先設計好的步驟加以解決.