国产18禁黄网站免费观看,99爱在线精品免费观看,粉嫩metart人体欣赏,99久久99精品久久久久久,6080亚洲人久久精品

高二數(shù)學(xué)上冊重要知識(shí)點(diǎn)復(fù)習(xí)

時(shí)間:2019-10-29 14:43:00   來源:無憂考網(wǎng)     [字體: ]
【#高二# #高二數(shù)學(xué)上冊重要知識(shí)點(diǎn)復(fù)習(xí)#】只有高效的學(xué)習(xí)方法,才可以很快的掌握知識(shí)的重難點(diǎn)。有效的讀書方式根據(jù)規(guī)律掌握方法,不要一來就死記硬背,先找規(guī)律,再記憶,然后再學(xué)習(xí),就能很快的掌握知識(shí)。®無憂考網(wǎng)高二頻道為你整理了《高二數(shù)學(xué)上冊重要知識(shí)點(diǎn)復(fù)習(xí)》希望對你有幫助!
【篇一】

  拋物線的性質(zhì):

  1.拋物線是軸對稱圖形。對稱軸為直線

  x=-b/2a。

  對稱軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。

  特別地,當(dāng)b=0時(shí),拋物線的對稱軸是y軸(即直線x=0)

  2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為

  P(-b/2a,(4ac-b^2)/4a)

  當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在x軸上。

  3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。

  當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。

  |a|越大,則拋物線的開口越小。

  4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對稱軸的位置。

  當(dāng)a與b同號(hào)時(shí)(即ab>0),對稱軸在y軸左;

  當(dāng)a與b異號(hào)時(shí)(即ab<0),對稱軸在y軸右。

  5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

  拋物線與y軸交于(0,c)

  6.拋物線與x軸交點(diǎn)個(gè)數(shù)

  Δ=b^2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。

  Δ=b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。

  Δ=b^2-4ac<0時(shí),拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)

  焦半徑:

  焦半徑:拋物線y2=2px(p>0)上一點(diǎn)P(x0,y0)到焦點(diǎn)Fèçæø÷ö

  p2,0的距離|PF|=x0+p2.

  求拋物線方程的方法:

  (1)定義法:根據(jù)條件確定動(dòng)點(diǎn)滿足的幾何特征,從而確定p的值,得到拋物線的標(biāo)準(zhǔn)方程.

  (2)待定系數(shù)法:根據(jù)條件設(shè)出標(biāo)準(zhǔn)方程,再確定參數(shù)p的值,這里要注意拋物線標(biāo)準(zhǔn)方程有四種形式.從簡單化角度出發(fā),焦點(diǎn)在x軸的,設(shè)為y2=ax(a≠0),焦點(diǎn)在y軸的,設(shè)為x2=by(b≠0).

【篇二】

  1、圓的定義:

  平面內(nèi)到一定點(diǎn)的距離等于定長的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長為圓的半徑。

  2、圓的方程

  (1)標(biāo)準(zhǔn)方程,圓心,半徑為r;

  (2)一般方程

  當(dāng)時(shí),方程表示圓,此時(shí)圓心為,半徑為

  當(dāng)時(shí),表示一個(gè)點(diǎn);當(dāng)時(shí),方程不表示任何圖形。

  (3)求圓方程的方法:

  一般都采用待定系數(shù)法:先設(shè)后求。確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,

  需求出a,b,r;若利用一般方程,需要求出D,E,F;

  另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點(diǎn),以此來確定圓心的位置。

  3、直線與圓的位置關(guān)系:

  直線與圓的位置關(guān)系有相離,相切,相交三種情況:

  (1)設(shè)直線,圓,圓心到l的距離為,則有

  (2)過圓外一點(diǎn)的切線:

 、賙不存在,驗(yàn)證是否成立②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程

  (3)過圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

  4、圓與圓的位置關(guān)系:

  通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

  設(shè)圓,

  兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

  當(dāng)時(shí)兩圓外離,此時(shí)有公切線四條;

  當(dāng)時(shí)兩圓外切,連心線過切點(diǎn),有外公切線兩條,內(nèi)公切線一條;

  當(dāng)時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

  當(dāng)時(shí),兩圓內(nèi)切,連心線經(jīng)過切點(diǎn),只有一條公切線;

  當(dāng)時(shí),兩圓內(nèi)含;當(dāng)時(shí),為同心圓。

  注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線

  圓的輔助線一般為連圓心與切線或者連圓心與弦中點(diǎn)