高二下冊(cè)數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)
時(shí)間:2022-06-29 11:54:00 來(lái)源:無(wú)憂考網(wǎng) [字體:小 中 大]
【#高二# #高二下冊(cè)數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)#】在學(xué)習(xí)新知識(shí)的同時(shí)還要復(fù)習(xí)以前的舊知識(shí),肯定會(huì)累,所以要注意勞逸結(jié)合。只有充沛的精力才能迎接新的挑戰(zhàn),才會(huì)有事半功倍的學(xué)習(xí)。©無(wú)憂考網(wǎng)高二頻道為你整理了《高二下冊(cè)數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)》希望對(duì)你的學(xué)習(xí)有所幫助!
1.高二下冊(cè)數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)
一、導(dǎo)數(shù)的應(yīng)用
1.用導(dǎo)數(shù)研究函數(shù)的最值
確定函數(shù)在其確定的定義域內(nèi)可導(dǎo)(通常為開區(qū)間),求出導(dǎo)函數(shù)在定義域內(nèi)的零點(diǎn),研究在零點(diǎn)左、右的函數(shù)的單調(diào)性,若左增,右減,則在該零點(diǎn)處,函數(shù)去極大值;若左邊減少,右邊增加,則該零點(diǎn)處函數(shù)取極小值。學(xué)習(xí)了如何用導(dǎo)數(shù)研究函數(shù)的最值之后,可以做一個(gè)有關(guān)導(dǎo)數(shù)和函數(shù)的綜合題來(lái)檢驗(yàn)下學(xué)習(xí)成果。
2.生活中常見的函數(shù)優(yōu)化問題
1)費(fèi)用、成本最省問題
2)利潤(rùn)、收益問題
3)面積、體積最(大)問題
二、推理與證明
1.歸納推理:歸納推理是高二數(shù)學(xué)的一個(gè)重點(diǎn)內(nèi)容,其難點(diǎn)就是有部分結(jié)論得到一般結(jié)論,*的方法是充分考慮部分結(jié)論提供的信息,從中發(fā)現(xiàn)一般規(guī)律;類比推理的難點(diǎn)是發(fā)現(xiàn)兩類對(duì)象的相似特征,由其中一類對(duì)象的特征得出另一類對(duì)象的特征,*的方法是利用已經(jīng)掌握的數(shù)學(xué)知識(shí),分析兩類對(duì)象之間的關(guān)系,通過兩類對(duì)象已知的相似特征得出所需要的相似特征。
2.類比推理:由兩類對(duì)象具有某些類似特征和其中一類對(duì)象的某些已知特征,推出另一類對(duì)象也具有這些特征的推理稱為類比推理,簡(jiǎn)而言之,類比推理是由特殊到特殊的推理。
三、不等式
對(duì)于含有參數(shù)的一元二次不等式解的討論
1)二次項(xiàng)系數(shù):如果二次項(xiàng)系數(shù)含有字母,要分二次項(xiàng)系數(shù)是正數(shù)、零和負(fù)數(shù)三種情況進(jìn)行討論。
2)不等式對(duì)應(yīng)方程的根:如果一元二次不等式對(duì)應(yīng)的方程的根能夠通過因式分解的方法求出來(lái),則根據(jù)這兩個(gè)根的大小進(jìn)行分類討論,這時(shí),兩個(gè)根的大小關(guān)系就是分類標(biāo)準(zhǔn),如果一元二次不等式對(duì)應(yīng)的方程根不能通過因式分解的方法求出來(lái),則根據(jù)方程的判別式進(jìn)行分類討論。通過不等式練習(xí)題能夠幫助你更加熟練的運(yùn)用不等式的知識(shí)點(diǎn),例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過程中總結(jié)出來(lái)。
2.高二下冊(cè)數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)
1.萬(wàn)能公式:令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2).
2.輔助角公式:asint+bcost=(a^2+b^2)^(1/2)sin(t+r)cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a。
向量公式:
1.單位向量:?jiǎn)挝幌蛄縜0=向量a/|向量a|.
2.P(x,y)那么向量OP=x向量i+y向量j|向量OP|=根號(hào)(x平方+y平方)。
3.P1(x1,y1)P2(x2,y2)那么向量P1P2={x2-x1,y2-y1}|向量P1P2|=根號(hào)[(x2-x1)平方+(y2-y1)平方]。
4.向量a={x1,x2}向量b={x2,y2}向量a_向量b=|向量a|_|向量b|_Cosα=x1x2+y1y2Cosα=向量a_向量b/|向量a|_|向量b|(x1x2+y1y2)根號(hào)(x1平方+y1平方)_根號(hào)(x2平方+y2平方)。
5.空間向量:同上推論(提示:向量a={x,y,z})。
6.充要條件:如果向量a向量b那么向量a_向量b=0如果向量a//向量b那么向量a_向量b=|向量a|_|向量b|或者x1/x2=y1/y2.
7.|向量a向量b|平方=|向量a|平方+|向量b|平方2向量a_向量b=(向量a向量b)平方。
3.高二下冊(cè)數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)
直線方程:
1.點(diǎn)斜式:y-y0=k(x-x0)
(x0,y0)是直線所通過的已知點(diǎn)的坐標(biāo),k是直線的已知斜率。x是自變量,直線上任意一點(diǎn)的橫坐標(biāo);y是因變量,直線上任意一點(diǎn)的縱坐標(biāo)。
2.斜截式:y=kx+b
直線的斜截式方程:y=kx+b,其中k是直線的斜率,b是直線在y軸上的截距。該方程叫做直線的斜截式方程,簡(jiǎn)稱斜截式。此斜截式類似于一次函數(shù)的表達(dá)式。
3.兩點(diǎn)式;(y-y1)/(y2-y1)=(x-x1)/(x2-x1)
如果x1=x2,y1=y2,那么兩點(diǎn)就重合了,相當(dāng)于只有一個(gè)已知點(diǎn)了,這樣不能確定一條直線。
如果x1=x2,y1y2,那么此直線就是垂直于X軸的一條直線,其方程為x=x1,不能表示成上面的一般式。
如果x1x2,但y1=y2,那么此直線就是垂直于Y軸的一條直線,其方程為y=y1,也不能表示成上面的一般式。
4.截距式x/a+y/b=1
對(duì)x的截距就是y=0時(shí),x的值,對(duì)y的截距就是x=0時(shí),y的值。x截距為a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推導(dǎo)y=kx+b,-kx=b-y令x=0求出y=b,令y=0求出x=-b/k所以截距a=-b/k,b=b帶入得x/a+y/b=x/(-b/k)+y/b=-kx/b+y/b=(b-y)/b+y/b=b/b=1。
5.一般式;Ax+By+C=0
將ax+by+c=0變換可得y=-x/b-c/b(b不為零),其中-x/b=k(斜率),c/b=‘b’(截距)。ax+by+c=0在解析幾何中更常用,用方程處理起來(lái)比較方便。
4.高二下冊(cè)數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)
復(fù)合函數(shù)定義域
若函數(shù)y=f(u)的定義域是B,u=g(x)的定義域是A,則復(fù)合函數(shù)y=f[g(x)]的定義域是D={x|x∈A,且g(x)∈B}綜合考慮各部分的x的取值范圍,取他們的交集。
求函數(shù)的定義域主要應(yīng)考慮以下幾點(diǎn):
⑴當(dāng)為整式或奇次根式時(shí),R的值域;
、飘(dāng)為偶次根式時(shí),被開方數(shù)不小于0(即≥0);
、钱(dāng)為分式時(shí),分母不為0;當(dāng)分母是偶次根式時(shí),被開方數(shù)大于0;
⑷當(dāng)為指數(shù)式時(shí),對(duì)零指數(shù)冪或負(fù)整數(shù)指數(shù)冪,底不為0。
、僧(dāng)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的,它的定義域應(yīng)是使各部分都有意義的自變量的值組成的集合,即求各部分定義域集合的交集。
、史侄魏瘮(shù)的定義域是各段上自變量的取值集合的并集。
、擞蓪(shí)際問題建立的函數(shù),除了要考慮使解析式有意義外,還要考慮實(shí)際意義對(duì)自變量的要求
、虒(duì)于含參數(shù)字母的函數(shù),求定義域時(shí)一般要對(duì)字母的取值情況進(jìn)行分類討論,并要注意函數(shù)的定義域?yàn)榉强占稀?/p>
、蛯(duì)數(shù)函數(shù)的真數(shù)必須大于零,底數(shù)大于零且不等于1。
、稳呛瘮(shù)中的切割函數(shù)要注意對(duì)角變量的限制。
復(fù)合函數(shù)常見題型
(ⅰ)已知f(x)定義域?yàn)锳,求f[g(x)]的定義域:實(shí)質(zhì)是已知g(x)的范圍為A,以此求出x的范圍。
(ⅱ)已知f[g(x)]定義域?yàn)锽,求f(x)的定義域:實(shí)質(zhì)是已知x的范圍為B,以此求出g(x)的范圍。
(ⅲ)已知f[g(x)]定義域?yàn)镃,求f[h(x)]的定義域:實(shí)質(zhì)是已知x的范圍為C,以此先求出g(x)的范圍(即f(x)的定義域);然后將其作為h(x)的范圍,以此再求出x的范圍。
5.高二下冊(cè)數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)
函數(shù)的單調(diào)性、奇偶性、周期性
單調(diào)性:
定義:注意定義是相對(duì)與某個(gè)具體的區(qū)間而言。
判定方法:定義法(作差比較和作商比較)
導(dǎo)數(shù)法(適用于多項(xiàng)式函數(shù))
復(fù)合函數(shù)法和圖像法。
應(yīng)用:比較大小,證明不等式,解不等式。
奇偶性:
定義:注意區(qū)間是否關(guān)于原點(diǎn)對(duì)稱,比較f(x)與f(-x)的關(guān)系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數(shù);
f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數(shù)。
判別方法:定義法,圖像法,復(fù)合函數(shù)法
應(yīng)用:把函數(shù)值進(jìn)行轉(zhuǎn)化求解。
周期性:
定義:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。
其他:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.
應(yīng)用:求函數(shù)值和某個(gè)區(qū)間上的函數(shù)解析式。