国产18禁黄网站免费观看,99爱在线精品免费观看,粉嫩metart人体欣赏,99久久99精品久久久久久,6080亚洲人久久精品

高三數(shù)學(xué)上冊優(yōu)秀教案

時間:2023-02-14 11:01:00   來源:無憂考網(wǎng)     [字體: ]
【#高三# #高三數(shù)學(xué)上冊優(yōu)秀教案#】作為一名老師,時常需要編寫教案,借助教案可以更好地組織教學(xué)活動。以下是©無憂考網(wǎng)整理的《高三數(shù)學(xué)上冊優(yōu)秀教案》希望能夠幫助到大家。

1.高三數(shù)學(xué)上冊優(yōu)秀教案 篇一


  一、教學(xué)目標(biāo)

  1、把握菱形的判定

  2、通過運用菱形知識解決具體問題,提高分析能力和觀察能力

  3、通過教具的演示培養(yǎng)學(xué)生的學(xué)習(xí)愛好

  二、教法設(shè)計

  觀察分析討論相結(jié)合的方法

  三、重點·難點·疑點及解決辦法

  1、教學(xué)重點:菱形的判定方法、

  2、教學(xué)難點:菱形判定方法的綜合應(yīng)用、

  四、課時安排

  1課時

  五、教具學(xué)具預(yù)備

  教具(做一個短邊可以運動的平行四邊形)、投影儀和膠片,常用畫圖工具

  六、師生互動活動設(shè)計

  教師演示教具、創(chuàng)設(shè)情境,引入新課,學(xué)生觀察討論;學(xué)生分析論證方法,教師適時點撥

2.高三數(shù)學(xué)上冊優(yōu)秀教案 篇二


  教學(xué)目標(biāo):

  1、知識與技能:

  1)了解導(dǎo)數(shù)概念的實際背景;

  2)理解導(dǎo)數(shù)的概念、掌握簡單函數(shù)導(dǎo)數(shù)符號表示和基本導(dǎo)數(shù)求解方法;

  3)理解導(dǎo)數(shù)的幾何意義;

  4)能進行簡單的導(dǎo)數(shù)四則運算。

  2、過程與方法:

  先理解導(dǎo)數(shù)概念背景,培養(yǎng)觀察問題的能力;再掌握定義和幾何意義,培養(yǎng)轉(zhuǎn)化問題的能力;后求切線方程及運算,培養(yǎng)解決問題的能力。

  3、情態(tài)及價值觀;

  讓學(xué)生感受數(shù)學(xué)與生活之間的聯(lián)系,體會數(shù)學(xué)的美,激發(fā)學(xué)生學(xué)習(xí)興趣與主動性。

  教學(xué)重點:

  1、導(dǎo)數(shù)的求解方法和過程;

  2、導(dǎo)數(shù)公式及運算法則的熟練運用。

  教學(xué)難點:

  1、導(dǎo)數(shù)概念及其幾何意義的理解;

  2、數(shù)形結(jié)合思想的靈活運用。

  教學(xué)課型:復(fù)習(xí)課(高三一輪)

  教學(xué)課時:約1課時

3.高三數(shù)學(xué)上冊優(yōu)秀教案 篇三


  1.導(dǎo)數(shù)概念及其幾何意義

  (1)了解導(dǎo)數(shù)概念的實際背景;

  (2)理解導(dǎo)數(shù)的幾何意義.

  2.導(dǎo)數(shù)的運算

  (1)能根據(jù)導(dǎo)數(shù)定義,求函數(shù)y=c(c為常數(shù)),y=x,y=x2,y=x3,y=,y=的導(dǎo)數(shù);

  (2)能利用基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運算法則求簡單函數(shù)的導(dǎo)數(shù),能求簡單的復(fù)合函數(shù)(僅限于形如f(ax+b)的復(fù)合函數(shù))的導(dǎo)數(shù).

  3.導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用

  (1)了解函數(shù)單調(diào)性和導(dǎo)數(shù)的關(guān)系,能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間(其中多項式函數(shù)一般不超過三次);

  (2)了解函數(shù)在某點取得極值的必要條件和充分條件;會用導(dǎo)數(shù)求函數(shù)的極大值、極小值(其中多項式函數(shù)一般不超過三次);會求閉區(qū)間上函數(shù)的大值、小值(其中多項式函數(shù)一般不超過三次).

  4.生活中的優(yōu)化問題

  會利用導(dǎo)數(shù)解決某些實際問題.

  5.定積分與微積分基本定理

  (1)了解定積分的實際背景,了解定積分的基本思想,了解定積分的概念;

  (2)了解微積分基本定理的含義.本章重點:

  1.導(dǎo)數(shù)的概念;

  2.利用導(dǎo)數(shù)求切線的斜率;

  3.利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性或求單調(diào)區(qū)間;

  4.利用導(dǎo)數(shù)求極值或值;

  5.利用導(dǎo)數(shù)求實際問題優(yōu)解.

4.高三數(shù)學(xué)上冊優(yōu)秀教案 篇四


  一、教學(xué)內(nèi)容分析

  本小節(jié)是普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)5(必修)第三章第3小節(jié),主要內(nèi)容是利用平面區(qū)域體現(xiàn)二元不等式(組)的解集;借助圖解法解決在線性約束條件下的二元線性目標(biāo)函數(shù)的值與解問題;運用線性規(guī)劃知識解決一些簡單的實際問題(如資源利用,人力調(diào)配,生產(chǎn)安排等)。突出體現(xiàn)了優(yōu)化思想,與數(shù)形結(jié)合的思想。本小節(jié)是利用數(shù)學(xué)知識解決實際問題的典例,它體現(xiàn)了數(shù)學(xué)源于生活而用于生活的特性。

  二、學(xué)生學(xué)習(xí)情況分析

  本小節(jié)內(nèi)容建立在學(xué)生學(xué)習(xí)了一元不等式(組)及其應(yīng)用、直線與方程的基礎(chǔ)之上,學(xué)生對于將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,數(shù)形結(jié)合思想有所了解。但從數(shù)學(xué)知識上看學(xué)生對于涉及多個已知數(shù)據(jù)、多個字母變量,多個不等關(guān)系的知識接觸尚少,從數(shù)學(xué)方法上看,學(xué)生對于圖解法還缺少認(rèn)識,對數(shù)形結(jié)合的思想方法的掌握還需時日,而這些都將成為學(xué)生學(xué)習(xí)中的難點。

  三、設(shè)計思想

  以問題為載體,以學(xué)生為主體,以探究歸納為主要手段,以問題解決為目的,以多媒體為重要工具,激發(fā)學(xué)生的動手、觀察、思考、猜想探究的興趣。注重引導(dǎo)學(xué)生充分體驗“從實際問題到數(shù)學(xué)問題”的數(shù)學(xué)建模過程,體會“從具體到一般”的抽象思維過程,從“特殊到一般”的探究新知的過程;提高學(xué)生應(yīng)用“數(shù)形結(jié)合”的思想方法解題的能力;培養(yǎng)學(xué)生的分析問題、解決問題的能力。

  四、教學(xué)目標(biāo)

  1、知識與技能:了解二元不等式(組)的概念,掌握用平面區(qū)域刻畫二元不等式(組)的方法;了解線性規(guī)劃的意義,了解線性約束條件、線性目標(biāo)函數(shù)、可行解、可行域和解等概念;理解線性規(guī)劃問題的圖解法;會利用圖解法求線性目標(biāo)函數(shù)的值與相應(yīng)解;

  2、過程與方法:從實際問題中抽象出簡單的線性規(guī)劃問題,提高學(xué)生的數(shù)學(xué)建模能力;在探究的過程中讓學(xué)生體驗到數(shù)學(xué)活動中充滿著探索與創(chuàng)造,培養(yǎng)學(xué)生的數(shù)據(jù)分析能力、化歸能力、探索能力、合情推理能力;

  3、情態(tài)與價值:在應(yīng)用圖解法解題的過程中,培養(yǎng)學(xué)生的化歸能力與運用數(shù)形結(jié)合思想的能力;體會線性規(guī)劃的基本思想,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識;體驗數(shù)學(xué)來源于生活而服務(wù)于生活的特性。

  五、教學(xué)重點和難點

  重點:從實際問題中抽象出二元不等式(組),用平面區(qū)域刻畫二元不等式組的解集及用圖解法解簡單的二元線性規(guī)劃問題;

  難點:二元不等式所表示的平面區(qū)域的探究,從實際情境中抽象出數(shù)學(xué)問題的過程探究,簡單的二元線性規(guī)劃問題的圖解法的探究。

5.高三數(shù)學(xué)上冊優(yōu)秀教案 篇五


  一、導(dǎo)入新課,探究標(biāo)準(zhǔn)方程

  二、掌握知識,鞏固練習(xí)

  練習(xí):

  1、說出下列圓的方程

 、艌A心(3,—2)半徑為5

 、茍A心(0,3)半徑為3

  2、指出下列圓的圓心和半徑

  ⑴(x—2)2+(y+3)2=3

 、苮2+y2=2

 、莤2+y2—6x+4y+12=0

  3、判斷3x—4y—10=0和x2+y2=4的位置關(guān)系

  4、圓心為(1,3),并與3x—4y—7=0相切,求這個圓的方程

  三、引伸提高,講解例題

  例1、圓心在y=—2x上,過p(2,—1)且與x—y=1相切求圓的方程(突出待定系數(shù)的數(shù)學(xué)方法)

  練習(xí):

  1、某圓過(—2,1)、(2,3),圓心在x軸上,求其方程。

  2、某圓過A(—10,0)、B(10,0)、C(0,4),求圓的方程。

  例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。

  例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓(xùn)練思維)

  四、小結(jié)練習(xí)P771,2,3,4

  五、作業(yè)P811,2,3,4