1.高三數(shù)學(xué)上冊(cè)優(yōu)秀教案 篇一
一、教學(xué)目標(biāo)
1、把握菱形的判定
2、通過(guò)運(yùn)用菱形知識(shí)解決具體問(wèn)題,提高分析能力和觀察能力
3、通過(guò)教具的演示培養(yǎng)學(xué)生的學(xué)習(xí)愛(ài)好
二、教法設(shè)計(jì)
觀察分析討論相結(jié)合的方法
三、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法
1、教學(xué)重點(diǎn):菱形的判定方法、
2、教學(xué)難點(diǎn):菱形判定方法的綜合應(yīng)用、
四、課時(shí)安排
1課時(shí)
五、教具學(xué)具預(yù)備
教具(做一個(gè)短邊可以運(yùn)動(dòng)的平行四邊形)、投影儀和膠片,常用畫(huà)圖工具
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
教師演示教具、創(chuàng)設(shè)情境,引入新課,學(xué)生觀察討論;學(xué)生分析論證方法,教師適時(shí)點(diǎn)撥
2.高三數(shù)學(xué)上冊(cè)優(yōu)秀教案 篇二
教學(xué)目標(biāo):
1、知識(shí)與技能:
1)了解導(dǎo)數(shù)概念的實(shí)際背景;
2)理解導(dǎo)數(shù)的概念、掌握簡(jiǎn)單函數(shù)導(dǎo)數(shù)符號(hào)表示和基本導(dǎo)數(shù)求解方法;
3)理解導(dǎo)數(shù)的幾何意義;
4)能進(jìn)行簡(jiǎn)單的導(dǎo)數(shù)四則運(yùn)算。
2、過(guò)程與方法:
先理解導(dǎo)數(shù)概念背景,培養(yǎng)觀察問(wèn)題的能力;再掌握定義和幾何意義,培養(yǎng)轉(zhuǎn)化問(wèn)題的能力;后求切線方程及運(yùn)算,培養(yǎng)解決問(wèn)題的能力。
3、情態(tài)及價(jià)值觀;
讓學(xué)生感受數(shù)學(xué)與生活之間的聯(lián)系,體會(huì)數(shù)學(xué)的美,激發(fā)學(xué)生學(xué)習(xí)興趣與主動(dòng)性。
教學(xué)重點(diǎn):
1、導(dǎo)數(shù)的求解方法和過(guò)程;
2、導(dǎo)數(shù)公式及運(yùn)算法則的熟練運(yùn)用。
教學(xué)難點(diǎn):
1、導(dǎo)數(shù)概念及其幾何意義的理解;
2、數(shù)形結(jié)合思想的靈活運(yùn)用。
教學(xué)課型:復(fù)習(xí)課(高三一輪)
教學(xué)課時(shí):約1課時(shí)
3.高三數(shù)學(xué)上冊(cè)優(yōu)秀教案 篇三
1.導(dǎo)數(shù)概念及其幾何意義
(1)了解導(dǎo)數(shù)概念的實(shí)際背景;
(2)理解導(dǎo)數(shù)的幾何意義.
2.導(dǎo)數(shù)的運(yùn)算
(1)能根據(jù)導(dǎo)數(shù)定義,求函數(shù)y=c(c為常數(shù)),y=x,y=x2,y=x3,y=,y=的導(dǎo)數(shù);
(2)能利用基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運(yùn)算法則求簡(jiǎn)單函數(shù)的導(dǎo)數(shù),能求簡(jiǎn)單的復(fù)合函數(shù)(僅限于形如f(ax+b)的復(fù)合函數(shù))的導(dǎo)數(shù).
3.導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用
(1)了解函數(shù)單調(diào)性和導(dǎo)數(shù)的關(guān)系,能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求函數(shù)的單調(diào)區(qū)間(其中多項(xiàng)式函數(shù)一般不超過(guò)三次);
(2)了解函數(shù)在某點(diǎn)取得極值的必要條件和充分條件;會(huì)用導(dǎo)數(shù)求函數(shù)的極大值、極小值(其中多項(xiàng)式函數(shù)一般不超過(guò)三次);會(huì)求閉區(qū)間上函數(shù)的大值、小值(其中多項(xiàng)式函數(shù)一般不超過(guò)三次).
4.生活中的優(yōu)化問(wèn)題
會(huì)利用導(dǎo)數(shù)解決某些實(shí)際問(wèn)題.
5.定積分與微積分基本定理
(1)了解定積分的實(shí)際背景,了解定積分的基本思想,了解定積分的概念;
(2)了解微積分基本定理的含義.本章重點(diǎn):
1.導(dǎo)數(shù)的概念;
2.利用導(dǎo)數(shù)求切線的斜率;
3.利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性或求單調(diào)區(qū)間;
4.利用導(dǎo)數(shù)求極值或值;
5.利用導(dǎo)數(shù)求實(shí)際問(wèn)題優(yōu)解.
4.高三數(shù)學(xué)上冊(cè)優(yōu)秀教案 篇四
一、教學(xué)內(nèi)容分析
本小節(jié)是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)5(必修)第三章第3小節(jié),主要內(nèi)容是利用平面區(qū)域體現(xiàn)二元不等式(組)的解集;借助圖解法解決在線性約束條件下的二元線性目標(biāo)函數(shù)的值與解問(wèn)題;運(yùn)用線性規(guī)劃知識(shí)解決一些簡(jiǎn)單的實(shí)際問(wèn)題(如資源利用,人力調(diào)配,生產(chǎn)安排等)。突出體現(xiàn)了優(yōu)化思想,與數(shù)形結(jié)合的思想。本小節(jié)是利用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的典例,它體現(xiàn)了數(shù)學(xué)源于生活而用于生活的特性。
二、學(xué)生學(xué)習(xí)情況分析
本小節(jié)內(nèi)容建立在學(xué)生學(xué)習(xí)了一元不等式(組)及其應(yīng)用、直線與方程的基礎(chǔ)之上,學(xué)生對(duì)于將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,數(shù)形結(jié)合思想有所了解。但從數(shù)學(xué)知識(shí)上看學(xué)生對(duì)于涉及多個(gè)已知數(shù)據(jù)、多個(gè)字母變量,多個(gè)不等關(guān)系的知識(shí)接觸尚少,從數(shù)學(xué)方法上看,學(xué)生對(duì)于圖解法還缺少認(rèn)識(shí),對(duì)數(shù)形結(jié)合的思想方法的掌握還需時(shí)日,而這些都將成為學(xué)生學(xué)習(xí)中的難點(diǎn)。
三、設(shè)計(jì)思想
以問(wèn)題為載體,以學(xué)生為主體,以探究歸納為主要手段,以問(wèn)題解決為目的,以多媒體為重要工具,激發(fā)學(xué)生的動(dòng)手、觀察、思考、猜想探究的興趣。注重引導(dǎo)學(xué)生充分體驗(yàn)“從實(shí)際問(wèn)題到數(shù)學(xué)問(wèn)題”的數(shù)學(xué)建模過(guò)程,體會(huì)“從具體到一般”的抽象思維過(guò)程,從“特殊到一般”的探究新知的過(guò)程;提高學(xué)生應(yīng)用“數(shù)形結(jié)合”的思想方法解題的能力;培養(yǎng)學(xué)生的分析問(wèn)題、解決問(wèn)題的能力。
四、教學(xué)目標(biāo)
1、知識(shí)與技能:了解二元不等式(組)的概念,掌握用平面區(qū)域刻畫(huà)二元不等式(組)的方法;了解線性規(guī)劃的意義,了解線性約束條件、線性目標(biāo)函數(shù)、可行解、可行域和解等概念;理解線性規(guī)劃問(wèn)題的圖解法;會(huì)利用圖解法求線性目標(biāo)函數(shù)的值與相應(yīng)解;
2、過(guò)程與方法:從實(shí)際問(wèn)題中抽象出簡(jiǎn)單的線性規(guī)劃問(wèn)題,提高學(xué)生的數(shù)學(xué)建模能力;在探究的過(guò)程中讓學(xué)生體驗(yàn)到數(shù)學(xué)活動(dòng)中充滿(mǎn)著探索與創(chuàng)造,培養(yǎng)學(xué)生的數(shù)據(jù)分析能力、化歸能力、探索能力、合情推理能力;
3、情態(tài)與價(jià)值:在應(yīng)用圖解法解題的過(guò)程中,培養(yǎng)學(xué)生的化歸能力與運(yùn)用數(shù)形結(jié)合思想的能力;體會(huì)線性規(guī)劃的基本思想,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí);體驗(yàn)數(shù)學(xué)來(lái)源于生活而服務(wù)于生活的特性。
五、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):從實(shí)際問(wèn)題中抽象出二元不等式(組),用平面區(qū)域刻畫(huà)二元不等式組的解集及用圖解法解簡(jiǎn)單的二元線性規(guī)劃問(wèn)題;
難點(diǎn):二元不等式所表示的平面區(qū)域的探究,從實(shí)際情境中抽象出數(shù)學(xué)問(wèn)題的過(guò)程探究,簡(jiǎn)單的二元線性規(guī)劃問(wèn)題的圖解法的探究。
5.高三數(shù)學(xué)上冊(cè)優(yōu)秀教案 篇五
一、導(dǎo)入新課,探究標(biāo)準(zhǔn)方程
二、掌握知識(shí),鞏固練習(xí)
練習(xí):
1、說(shuō)出下列圓的方程
、艌A心(3,—2)半徑為5
⑵圓心(0,3)半徑為3
2、指出下列圓的圓心和半徑
、牛▁—2)2+(y+3)2=3
、苮2+y2=2
、莤2+y2—6x+4y+12=0
3、判斷3x—4y—10=0和x2+y2=4的位置關(guān)系
4、圓心為(1,3),并與3x—4y—7=0相切,求這個(gè)圓的方程
三、引伸提高,講解例題
例1、圓心在y=—2x上,過(guò)p(2,—1)且與x—y=1相切求圓的方程(突出待定系數(shù)的數(shù)學(xué)方法)
練習(xí):
1、某圓過(guò)(—2,1)、(2,3),圓心在x軸上,求其方程。
2、某圓過(guò)A(—10,0)、B(10,0)、C(0,4),求圓的方程。
例2:某圓拱橋的跨度為20米,拱高為4米,在建造時(shí)每隔4米加一個(gè)支柱支撐,求A2P2的長(zhǎng)度。
例3、點(diǎn)M(x0,y0)在x2+y2=r2上,求過(guò)M的圓的切線方程(一題多解,訓(xùn)練思維)
四、小結(jié)練習(xí)P771,2,3,4
五、作業(yè)P811,2,3,4