教學分析
本節(jié)課的研究是對初中不等式學習的延續(xù)和拓展,也是實數(shù)理論的進一步發(fā)展.在本節(jié)課的學習過程中,將讓學生回憶實數(shù)的基本理論,并能用實數(shù)的基本理論來比較兩個代數(shù)式的大小.
通過本節(jié)課的學習, 讓學生從一系列的具體問題情境中,感受到在現(xiàn)實世界和日常生活中存在著大量的不等關(guān)系,并充分認識不等關(guān)系的存在與應(yīng)用.對不等關(guān)系的相關(guān)素材,用數(shù)學觀點進行觀察、歸納、抽象,完成量與量的比較過程.即能用不等式或不等式組把這些不等關(guān)系表示出來.在本節(jié)課的學習過程中還安排了一些簡單的、學生易于處理的問題,其用意在于讓學生注意對數(shù)學知識和方法的應(yīng)用,同時也能激發(fā)學生的學習興趣,并由衷地產(chǎn)生用數(shù)學工具研究不等關(guān)系的愿望.根據(jù)本節(jié)課的教學內(nèi)容,應(yīng)用再現(xiàn)、回憶得出實數(shù)的基本理論,并能用實數(shù)的基本理論來比較兩個代數(shù)式的大小.
在本節(jié)教學中,教師可讓學生閱讀書中實例,充分利用數(shù)軸這一簡單的數(shù)形結(jié)合工具,直接用實數(shù)與數(shù)軸上 點的一一對應(yīng)關(guān)系,從數(shù)與形兩方面建立實數(shù)的順序關(guān)系.要在溫故知新的基礎(chǔ)上提高學生對不等式的認識.
三維目標
1.在學生了解不等式產(chǎn)生的實際背景下,利用數(shù)軸回憶實數(shù)的基本理論,理解實數(shù)的大小關(guān)系,理解實數(shù)大小與數(shù)軸上對應(yīng)點位置間的關(guān)系.
2.會用作差法判斷實數(shù)與代數(shù)式的大小,會用配方法判斷二次式的大小和范圍.
3.通過溫故知新,提高學生對不等式的認識,激發(fā)學生的學習興趣,體會數(shù)學的奧秘與數(shù)學的結(jié)構(gòu)美.
重點難點
教學重點:比較實數(shù)與代數(shù)式的大小關(guān)系,判斷二次式的大小和范圍.
教學難點:準確比較兩個代數(shù)式的大小.
課時安排
1課時
教學過程
導入新課
思路1.(章頭圖導入)通過多媒體展示衛(wèi)星、飛船和一幅山巒重疊起伏的壯觀畫面,它將學生帶入“橫看成嶺側(cè)成峰,遠近高低各不同”的大自然和浩瀚的宇宙中,使學生在具體情境中感受到不等關(guān)系在現(xiàn)實世界和日常生活中是大量存在的,由此產(chǎn)生用數(shù)學研究不等關(guān)系的強烈愿望,自然地引入新課.
思路2.(情境導入)列舉出學生身體的高矮、身體的輕重、距離學校路程的遠近、百米賽跑的時間、數(shù)學成績的多少等現(xiàn)實生活中學生身邊熟悉的事例,描述出某種客觀事物在數(shù)量上存在的不等關(guān)系.這些不等關(guān)系怎樣在數(shù)學上表示出來呢?讓學生自由地展開聯(lián)想,教師組織不等關(guān)系的相關(guān)素材,讓學 生用數(shù)學的觀點進行觀察、歸納,使學生在具體情境中感受到不等關(guān)系與相等關(guān)系一樣,在現(xiàn)實世界和日常生活中大量存在著.這樣學生會由衷地產(chǎn)生用數(shù)學工具研究不等關(guān)系的愿望,從而進入進一步的探究學習,由此引入新課.
推進新課
新知探究
提出問題
1回憶初中學過的不等式,讓學生說出“不等關(guān)系”與“不等式”的異同.怎樣利用不等式研究及表示不等關(guān)系?
2在現(xiàn)實世界和日常生活中,既有相等關(guān)系,又存在著大量的不等關(guān)系.你能舉出一些實際例子嗎?
3數(shù)軸上的任意兩 點與對應(yīng)的兩實數(shù)具有怎樣的關(guān)系?
4任意兩個實數(shù)具有怎樣的關(guān)系?用邏輯用語怎樣表達這個關(guān)系?
活動:教師引導學生回憶初中學過的不等式概念,使學生明確“不等關(guān)系”與“不等式”的異同.不等關(guān)系強調(diào)的是關(guān)系,可用符號“>”“<”“≠”“≥”“≤”表示,而不等式則是表示兩者的不等關(guān)系,可用“a>b”“a
教師與學生一起舉出我們?nèi)粘I钪胁坏汝P(guān)系的例子,可讓學生充分合作討論,使學生感受到現(xiàn)實世界中存在著大量的不等關(guān)系.在學生了解了一些不等式產(chǎn)生的實際背景的前提下,進一步學習不等式的有關(guān)內(nèi)容.
實例1:某天的天氣預報報道,高氣溫32 ℃,低氣溫26 ℃.
實例2:對于數(shù)軸上任意不同的兩點A、B,若點A在點B的左邊,則xA
實例3:若一個數(shù)是非負數(shù),則這個數(shù)大于或等于零.
實例4:兩點之間線段短.
實例5:三角形兩邊之和大于第三邊,兩邊之差小于第三邊.
實例6:限速40 km/h的路標指示司機在前方路段行駛時,應(yīng)使汽車的速度v不超過40 km/h.
實例7:某品牌酸奶的質(zhì)量檢查規(guī)定,酸奶中脂肪的含量f應(yīng)不少于2.5%,蛋白質(zhì)的含量p應(yīng)不少于2.3%.
教師進一步點撥:能夠發(fā)現(xiàn)身 邊的數(shù)學當然很好,這說明同學們已經(jīng)走進了數(shù)學這門學科,但作為我們研究數(shù)學的人來說,能用數(shù)學的眼光、數(shù)學的觀點進行觀察、歸納、抽象,完成這些量與量的比較過程,這是我們每個研究數(shù)學的人必須要做的,那么,我們可以用我們所研究過的什么知識來表示這些不等關(guān)系呢?學生很容易想到,用不等式或不等式組來表示這些不等關(guān)系.那么不等式就是用不等號將兩個代數(shù)式連結(jié)起來所成的式子.如-7<-5,3+4>1+4,2x≤6,a+2≥0,3≠4,0≤5等.
教師引導學生將上述的7個實例用不等式表示出來.實例1,若用t表示某天的氣溫,則26 ℃≤t≤32 ℃.實例3,若用x表示一個非負數(shù),則x≥0.實例5,|AC|+|BC|>|AB|,如下圖.
|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.
|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交換被減數(shù)與減數(shù)的位置也可以.
實例6,若用v表示速度,則v≤40 km/h.實例7,f≥2.5%,p≥2.3%.對于實例7,教師應(yīng)點撥學生注意酸奶中的脂肪含量與蛋白質(zhì)含量需同時滿足,避免寫成f≥2.5%或p≥2.3%,這是不對的.但可表示為f≥2.5%且p≥2.3%.
對以上問題,教師讓學生輪流回答,再用投影儀給出課本上的兩個結(jié)論.
討論結(jié)果:
(1)(2)略;(3)數(shù)軸上任意兩點中,右邊點對應(yīng)的實數(shù)比左邊點對應(yīng)的實數(shù)大.
(4)對于任意兩個實數(shù)a和b,在a=b,a>b,a應(yīng)用示例
例1(教材本節(jié)例1和例2)
活動:通過兩例讓學生熟悉兩個代數(shù)式的大小比較的基本方法:作差,配方法.
點評:本節(jié)兩例的求解,是借助因式分解和應(yīng)用配方法完成的,這兩種方法是代數(shù)式變形時經(jīng)常使用的方法,應(yīng)讓學生熟練掌握.
變式訓練
1.若f(x)=3x2-x+1,g(x)=2x2+x-1,則f(x)與g(x)的大小關(guān)系是( )
A.f(x)>g(x) B.f(x)=g(x)
C.f(x)
答案:A
解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).
2.已知x≠0,比較(x2+1)2與x4+x2+1的大小.
解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.
∵x≠0,得x2>0.從而(x2+1)2>x4+x2+1.
例2比較下列各組數(shù)的大小(a≠b).
(1)a+b2與21a+1b(a>0,b>0);
(2)a4-b4與4a3(a-b).
活動:比較兩個實數(shù)的大小,常根據(jù)實數(shù)的運算性質(zhì)與大小順序的關(guān)系,歸結(jié)為判斷它們的差的符號來確定.本例可由學生獨立完成,但要點撥學生在后的符號判斷說理中,要理由充分,不可忽略這點.
解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.
∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.
(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)
=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]
=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].
∵2a2+(a+b)2≥0(當且僅當a=b=0時取等號),
又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]<0.
∴a4-b4<4a3(a-b).
點評:比較大小常用作差法,一般步驟是作差——變形——判斷符號.變形常用的手段是分解因式和配方,前者將“差”變?yōu)椤胺e”,后者將“差”化為一個或幾個完全平方式的“和”,也可兩者并用.
變式訓練
已知x>y,且y≠0,比較xy與1的大小.
活動:要比較任意兩個數(shù)或式的大小關(guān)系,只需確定它們的差與0的大小關(guān)系.
解:xy-1=x-yy.
∵x>y,∴x-y>0.
當y<0時,x-yy<0,即xy-1<0. ∴xy<1;
當y>0時,x-yy>0,即xy-1>0.∴xy>1.
點評:當字母y取不同范圍的值時,差xy-1的正負情況不同,所以需對y分類討論.
例3建筑設(shè)計規(guī)定,民用住宅的窗戶面積必須小于地板面積.但按采光標準,窗戶面積與地板面積的比值應(yīng)不小于10%,且這個比值越大,住宅的采光條件越好.試問:同時增加相等的窗戶面積和地板面積, 住宅的采光條件是變好了,還是變壞了?請說明理由.
活動:解題關(guān)鍵首先是把文 字語言轉(zhuǎn)換成數(shù)學語言,然后比較前后比值的大小,采用作差法.
解:設(shè)住宅窗戶面積和地板面積分別為a、b,同時增加的面積為m,根據(jù)問題的要求a
由于a+mb+m-ab=mb-abb+m>0,于是a+mb+m>ab.又ab≥10%,
因此a+mb+m>ab≥10%.
所以同時增加相等的窗戶面積和地板面積后,住宅的采光條件變好了.
點評:一般地,設(shè)a、b為正實數(shù),且a
變式訓練
已知a1,a2,…為各項都大于零的等比數(shù)列,公比q≠1,則( )
A.a1+a8>a4+a5 B.a1+a8
C.a1+a8=a4+a5 D.a1+a8與a4+a5大小不確定
答案:A
解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4
=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).
∵{an}各項都大于零,∴q>0,即1+q>0.
又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.
課堂小結(jié)
1.教師與學生共同完成本節(jié)課的小結(jié),從實數(shù)的基本性質(zhì)的回顧,到兩個實數(shù)大小的比較方法;從例題的活動探究點評,到緊跟著的變式訓練,讓學生去繁就簡,聯(lián)系舊知,將本節(jié)課所學納入已有的知識體系中.
2.教師畫龍點睛,點撥利用實數(shù)的基本性質(zhì)對兩個實數(shù)大小比較時易錯的地方.鼓勵學有余力的學生對節(jié)末的思考與討論在課后作進一步的探究.
作業(yè)
習題3—1A組3;習題3—1B組2.
設(shè)計感想
1.本節(jié)設(shè)計關(guān)注了教學方法 的優(yōu)化.經(jīng)驗告訴我們:課堂上應(yīng)根據(jù)具體情況,選擇、設(shè)計能體現(xiàn)教學規(guī)律的教學 過程,不宜長期使用一種固定的教學方法,或原封不動地照搬一種實驗?zāi)J?各種教學方法中,沒有一種能很好地適應(yīng)一切教學活動.也就是說,世上沒有萬能的教學方法.針對個性,靈活變化,因材施教才是成功的施教靈藥.
2.本節(jié)設(shè)計注重了難度控制.不等式內(nèi)容應(yīng)用面廣,可以說與其他所有內(nèi)容都有交匯,歷 來是高考的重點與熱點.作為本章開始,可以適當開闊一些,算作拋磚引玉,讓學生有個自由探究聯(lián)想的平臺,但不宜過多向外拓展,以免對學生產(chǎn)生負面影響.
3.本節(jié)設(shè)計關(guān)注了學生思維能力的訓練.訓練學生的思維能力,提升思維的品質(zhì),是數(shù)學教師直面的重要課題,也是中學數(shù)學教育的主線.采用一題多解有助于思維的發(fā)散性及靈活性,克服思維的僵化.變式訓練教學又可以拓展學生思維視野的廣度,解題后的點撥反思有助于學生思維批判性品質(zhì)的提升.