【篇一】
約數(shù)與倍數(shù)
約數(shù)和倍數(shù):若整數(shù)a能夠被b整除,a叫做b的倍數(shù),b就叫做a的約數(shù)。
●公約數(shù):幾個數(shù)公有的約數(shù),叫做這幾個數(shù)的公約數(shù);其中的一個,叫做這幾個數(shù)的公約數(shù)。
▶公約數(shù)的性質:
1.幾個數(shù)都除以它們的公約數(shù),所得的幾個商是互質數(shù)。
2.幾個數(shù)的公約數(shù)都是這幾個數(shù)的約數(shù)。
3.幾個數(shù)的公約數(shù),都是這幾個數(shù)的公約數(shù)的約數(shù)。
4.幾個數(shù)都乘以一個自然數(shù)m,所得的積的公約數(shù)等于這幾個數(shù)的公約數(shù)乘以m。
例如:12的約數(shù)有1、2、3、4、6、12;
18的約數(shù)有:1、2、3、6、9、18;
那么12和18的公約數(shù)有:1、2、3、6;
那么12和18的公約數(shù)是:6,記作(12,18)=6;
▶求公約數(shù)基本方法:
1.分解質因數(shù)法:先分解質因數(shù),然后把相同的因數(shù)連乘起來。
2.短除法:先找公有的約數(shù),然后相乘。
3.輾轉相除法:每一次都用除數(shù)和余數(shù)相除,能夠整除的那個余數(shù),就是所求的公約數(shù)。
●公倍數(shù):幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù);其中最小的一個,叫做這幾個數(shù)的最小公倍數(shù)。
12的倍數(shù)有:12、24、36、48……;
18的倍數(shù)有:18、36、54、72……;
那么12和18的公倍數(shù)有:36、72、108……;
那么12和18最小的公倍數(shù)是36,記作[12,18]=36;
▶最小公倍數(shù)的性質:
1.兩個數(shù)的任意公倍數(shù)都是它們最小公倍數(shù)的倍數(shù)。
2.兩個數(shù)公約數(shù)與最小公倍數(shù)的乘積等于這兩個數(shù)的乘積。
▶求最小公倍數(shù)基本方法:
1.短除法求最小公倍數(shù);2.分解質因數(shù)的方法
【篇二】
完全平方數(shù)
完全平方數(shù)特征:
1.末位數(shù)字只能是:0、1、4、5、6、9;反之不成立。
2.除以3余0或余1;反之不成立。
3.除以4余0或余1;反之不成立。
4.約數(shù)個數(shù)為奇數(shù);反之成立。
5.奇數(shù)的平方的十位數(shù)字為偶數(shù);反之不成立。
6.奇數(shù)平方個位數(shù)字是奇數(shù);偶數(shù)平方個位數(shù)字是偶數(shù)。
7.兩個相臨整數(shù)的平方之間不可能再有平方數(shù)。
平方差公式:X2-Y2=(X-Y)(X+Y)
完全平方和公式:(X+Y)2=X2+2XY+Y2
完全平方差公式:(X-Y)2=X2-2XY+Y2
【篇三】
質數(shù)與合數(shù)
質數(shù):一個數(shù)除了1和它本身之外,沒有別的約數(shù),這個數(shù)叫做質數(shù),也叫做素數(shù)。
合數(shù):一個數(shù)除了1和它本身之外,還有別的約數(shù),這個數(shù)叫做合數(shù)。
質因數(shù):如果某個質數(shù)是某個數(shù)的約數(shù),那么這個質數(shù)叫做這個數(shù)的質因數(shù)。
分解質因數(shù):把一個數(shù)用質數(shù)相乘的形式表示出來,叫做分解質因數(shù)。通常用短除法分解質因數(shù)。任何一個合數(shù)分解質因數(shù)的結果是的。
分解質因數(shù)的標準表示形式:N=,其中a1、a2、a3……an都是合數(shù)N的質因數(shù),且a1 求約數(shù)個數(shù)的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1) 互質數(shù):如果兩個數(shù)的公約數(shù)是1,這兩個數(shù)叫做互質數(shù)。