【篇一】
小華買了一本共有96張練習紙的練習本,并依次將它的各面編號(即由第1面一直編到第192面)。小麗從該練習本中撕下其中25張紙,并將寫在它們上面的50個編號相加。試問,小麗所加得的和數(shù)能否為2000?
【分析】不可能。因為25個奇數(shù)相加的和是奇數(shù),25個偶數(shù)相加是偶數(shù),奇數(shù)加偶數(shù)=奇數(shù)
有98個孩子,每人胸前有一個號碼,號碼從1到98各不相同。試問:能否將這些孩子排成若干排,使每排中都有一個孩子的號碼數(shù)等于同排中其余孩子號碼數(shù)的和?并說明理由。
【分析】不可以。一名為98個數(shù)中有49個奇數(shù),奇數(shù)加偶數(shù)等于奇數(shù),奇數(shù)不是二的倍數(shù)。
有20個1升的容器,分別盛有1,2,3,…,20立方厘米水。允許由容器A向容器B倒進與B容器內(nèi)相同的水(在A中的水不少于B中水的條件下)。問:在若干次倒水以后能否使其中11個容器中各有11立方厘米的水?
【分析】不可能,因為兩個奇數(shù)相加等于偶數(shù),兩個偶數(shù)相加等于偶數(shù),11是奇數(shù),B是偶數(shù),偶數(shù)不等于奇數(shù)。
一個俱樂部里的成員只有兩種人:一種是老實人,永遠說真話;一種是騙子,永遠說假話。某天俱樂部的全體成員圍坐成一圈,每個老實人兩旁都是騙子,每個騙子兩旁都是老實人。外來一位記者問俱樂部的成員張三:“俱樂部里共有多少成員?”張三答:“共有45人。”另一個成員李四說:“張三是老實人!闭埮袛嗬钏氖抢蠈嵢诉是騙子?
【分析】李四是騙子,老實人和說謊的人的人數(shù)相等,可是45是個奇數(shù),所以張三是騙子。
【篇二】
圍棋盤上有19×19個交叉點,現(xiàn)在放滿了黑子與白子,且黑子與白子相間地放,并使黑子(或白子)的上、下、左、右的交叉點上放著白子(或黑子)。問:能否把黑子全移到原來的白子的位置上,而白子也全移到原來黑子的位置上?
【分析】不可以,因為不是白字多黑字一個,就是黑子多白字一個,不可能相等。
某市五年級99名同學參加數(shù)學競賽,競賽題共30道,評分標準是基礎(chǔ)分15分,答對一道加5分,不答記1分,答錯一道倒扣1分。問:所有參賽同學得分總和是奇數(shù)還是偶數(shù)?
【分析】奇數(shù),5*30+15=165165-6N-4M=奇數(shù)減去偶數(shù)=奇數(shù)99*奇數(shù)=奇數(shù)。
有30枚2分硬幣和8枚5分硬幣,5角以內(nèi)共有49種不同的幣值,哪幾種幣值不能由上面38枚硬幣組成?
解:當幣值為偶數(shù)時,可以用若干枚2分硬幣組成;
當幣值為奇數(shù)時,除1分和3分這兩種幣值外,其余的都可以用1枚5分和若干枚2分硬幣組成,所以5角以下的不同幣值,只有1分和3分這兩種幣值不能由題目給出的硬幣組成。
說明:將全體整數(shù)分為奇數(shù)與偶數(shù)兩類,分而治之,逐一討論,是解決整數(shù)問題的常用方法。
若偶數(shù)用2k表示,奇數(shù)用2k+1表示,則上述討論可用數(shù)學式子更為直觀地表示如下:
當幣值為偶數(shù)時,2k說明可用若干枚2分硬幣表示;
當幣值為奇數(shù)時,
2k+1=2(k-2)+5,
其中k≥2。當k=0,1時,2k+1=1,3。1分和3分硬幣不能由2分和5分硬幣組成,而其他幣值均可由2分和5分硬幣組成。
【篇三】
設(shè)標有A,B,C,D,E,F(xiàn),G的7盞燈順次排成一行,每盞燈安裝一個開關(guān)。現(xiàn)在A,C,D,G這4盞燈亮著,其余3盞燈沒亮。小華從燈A開始順次拉動開關(guān),即從A到G,再從A開始順次拉動開關(guān),他這樣拉動了999次開關(guān)后,哪些燈亮著,哪些燈沒亮?
解:一盞燈的開關(guān)被拉動奇數(shù)次后,將改變原來的狀態(tài),即亮的變成熄的,熄的變成亮的;而一盞燈的開關(guān)被拉動偶數(shù)次后,不改變原來的狀態(tài)。由于
999=7×142+5,
因此,燈A,B,C,D,E各被拉動143次開關(guān),燈F,G各被拉動142次開關(guān)。所以,當小華拉動999次后B,E,G亮,而A,C,D,F(xiàn)熄。
桌上放有77枚正面朝下的硬幣,第1次翻動77枚,第2次翻動其中的76枚,第3次翻動其中的75枚……第77次翻動其中的1枚。按這樣的方法翻動硬幣,能否使桌上所有的77枚硬幣都正面朝上?說明你的理由。
分析:對每一枚硬幣來說,只要翻動奇數(shù)次,就可使原先朝下的一面朝上。這一事實,對我們解決這個問題起著關(guān)鍵性作用。
解:按規(guī)定的翻動,共翻動1+2+…+77=77×39次,平均每枚硬幣翻動了39次,這是奇數(shù)。因此,對每一枚硬幣來說,都可以使原先朝下的一面翻朝上。注意到
77×39=77+(76+1)+(75+2)+…+(39+38),
根據(jù)規(guī)定,可以設(shè)計如下的翻動方法:
第1次翻動77枚,可以將每枚硬幣都翻動一次;第2次與第77次共翻動77枚,又可將每枚硬幣都翻動一次;同理,第3次與第76次,第4次與第75次……第39次與第40次都可將每枚硬幣各翻動一次。這樣每枚硬幣都翻動了39次,都由正面朝下變?yōu)檎娉稀?/p>
說明:(1)此題也可從簡單情形入手(如9枚硬幣的情形),按規(guī)定的翻法翻動硬幣,從中獲得啟發(fā)。
(2)對有關(guān)正、反,開、關(guān)等實際問題通?苫癁橛闷媾紨(shù)關(guān)系討論。
甲盒中放有180個白色圍棋子和181個黑色圍棋子,乙盒中放有181個白色圍棋子,李平每次任意從甲盒中摸出兩個棋子,如果兩個棋子同色,他就從乙盒中拿出一個白子放入甲盒;如果兩個棋子不同色,他就把黑子放回甲盒.那么他拿多少后,甲盒中只剩下一個棋子,這個棋子是什么顏色的?
考點:奇偶性問題.
分析:因為李平從甲盒中拿出兩個什么樣的棋子,他總會把一個棋子放入甲盒.所以他每拿一次,甲盒子中的棋子數(shù)就減少一個,所以他拿180+181-1=360次后,甲盒里只剩下一個棋子.如果他拿出的是兩個黑子,那么甲盒中的黑子數(shù)就減少兩個.否則甲盒子中的黑子數(shù)不變.也就是說,李平每次從甲盒子拿出的黑子數(shù)都是偶數(shù).由于181是奇數(shù),奇數(shù)減偶數(shù)等于奇數(shù).所以,甲盒中剩下的黑子數(shù)應(yīng)是奇數(shù),而不大于1的奇數(shù)只有1,所以甲盒里剩下的一個棋子應(yīng)該是黑子.
解答:解;他每拿一次,甲盒子中的棋子數(shù)就減少一個,
180+181-1=360(次)
所以拿360次后,甲盒里只剩下一個棋子;
李平每次從甲盒子拿出的黑子數(shù)都是偶數(shù),
由于181是奇數(shù),奇數(shù)減偶數(shù)等于奇數(shù),
則甲盒中剩下的黑子數(shù)應(yīng)是奇數(shù),而不大于1的奇數(shù)只有1,
所以甲盒里剩下的一個棋子應(yīng)該是黑子.
答:這個棋子是黑色.
點評:完成本題的關(guān)健是明確“李平每次從甲盒子拿出的黑子數(shù)都是偶數(shù)”,然后再據(jù)數(shù)的奇偶性進行解答就行了.